CCF 碰撞的小球

一:问题描述

  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。

提示

  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。

输入格式

  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。

输出格式

  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。

样例输入

3 10 5
4 6 8

样例输出

7 9 9

 

二:因为小球相遇会碰撞向相反的方向移动,所以小球在线段上的顺序不会发生改变,可以用数组tp[i] 记录下第i个小球在每一秒的位置。

程序如下: 

#include <iostream>
#include <map>
#include <algorithm>
#include <vector>
using namespace std;
struct  spherical {
 	int u;
 	int w;
 	int dr;
 	spherival(){}
 	
 	spherical(int a, int b,int c) {
	 u = a, w = b,dr = c;
 	}
 	friend bool operator<(const spherical &e1, const spherical &e2) {
 		return e1.w < e2.w;
 	}
};
int main()
{
	
	vector<spherical>ant;

 	int n, L, t;
 	n = 10;
 	L = 22;
 	t = 30;
 	int tp[10] = {14,12,16,6,10,2,8,20,18,4};
 	//cin >> n >> L >> t;
 	int temp;
 	for(int i = 0; i < n;i++){
 		//cin>>temp;
 		temp = tp[i];
 		ant.push_back(spherical(i,temp,+1));
	 }
	 
	sort(ant.begin(),ant.end()); //将小球按照位置进行排序,同时保存小球的标号
	 
 	int time = 0;
 	while (++time <= t) {
		for (int i = 0; i < n; i++) {
			ant[i].w += ant[i].dr;
				 
			if (ant[i].w == L) 
				ant[i].dr = -1;
 			else if (ant[i].w == 0)
  				ant[i].dr = 1;
 		}
 		for (int i = 0; i < n - 1; i++) {
			int l = i, r = i + 1;
			if (ant[l].w == ant[r].w) {
				ant[l].dr *= -1;
				ant[r].dr *= -1;   //如果相遇,两个小球就反向
			}
			i++;
		}
	}
	
	for(int i = 0 ; i < n;i++){
		for(int j = 0; j < n;j++){
			if(ant[j].u == i){
				cout<<ant[j].w;
			if(i == n)
				cout<<endl;
			else
				cout<<" ";
			}
			
		}
	}
	
	 return 0;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值