一:问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
二:因为小球相遇会碰撞向相反的方向移动,所以小球在线段上的顺序不会发生改变,可以用数组tp[i] 记录下第i个小球在每一秒的位置。
程序如下:
#include <iostream>
#include <map>
#include <algorithm>
#include <vector>
using namespace std;
struct spherical {
int u;
int w;
int dr;
spherival(){}
spherical(int a, int b,int c) {
u = a, w = b,dr = c;
}
friend bool operator<(const spherical &e1, const spherical &e2) {
return e1.w < e2.w;
}
};
int main()
{
vector<spherical>ant;
int n, L, t;
n = 10;
L = 22;
t = 30;
int tp[10] = {14,12,16,6,10,2,8,20,18,4};
//cin >> n >> L >> t;
int temp;
for(int i = 0; i < n;i++){
//cin>>temp;
temp = tp[i];
ant.push_back(spherical(i,temp,+1));
}
sort(ant.begin(),ant.end()); //将小球按照位置进行排序,同时保存小球的标号
int time = 0;
while (++time <= t) {
for (int i = 0; i < n; i++) {
ant[i].w += ant[i].dr;
if (ant[i].w == L)
ant[i].dr = -1;
else if (ant[i].w == 0)
ant[i].dr = 1;
}
for (int i = 0; i < n - 1; i++) {
int l = i, r = i + 1;
if (ant[l].w == ant[r].w) {
ant[l].dr *= -1;
ant[r].dr *= -1; //如果相遇,两个小球就反向
}
i++;
}
}
for(int i = 0 ; i < n;i++){
for(int j = 0; j < n;j++){
if(ant[j].u == i){
cout<<ant[j].w;
if(i == n)
cout<<endl;
else
cout<<" ";
}
}
}
return 0;