求组合数C(n,m) % mod的几种方法

本文介绍了三种求解组合数C(n,m)模mod的方法:利用乘法逆元,适用于mod较小的情况;应用Lucas定理结合乘法逆元,适合mod在10^5左右的素数;以及预处理配合乘法逆元,适用于mod较大的素数场景。" 77510054,732056,Python脚本批量重命名文件夹中图片,"['Python', '脚本', '文件操作']
摘要由CSDN通过智能技术生成

算法一:乘法逆元,在m,n和mod比较小的情况下适用

乘法逆元:(a/b)% mod = a * b^(mod-2),mod为素数

C_{n}^{m} = \tfrac{n!}{m!*(n-m)!} = \tfrac{n*(n-1)*...*(n-m+1)}{m!} = n*(n-1)*...*(n-m+1) * (m!)^{mod-2}

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<vector>
#define LL long long

using namespace std;

const int MOD = 9982;

LL pow(LL x)
{
	LL n = MOD-2; 
    LL res=1;
	while(n>0)
	{
	   if(n & 1)	
	   	 res=res*x%MOD;
	   x=x*x%MOD;
	   n>>=1;
	}
	return res%MOD;	
}
  
LL C(LL n,LL m)  
{  
    if(m < 0)return 0;  
    if(n < m)return 0;  
    
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值