算法一:乘法逆元,在m,n和mod比较小的情况下适用
乘法逆元:(a/b)% mod = a * b^(mod-2),mod为素数
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<vector>
#define LL long long
using namespace std;
const int MOD = 9982;
LL pow(LL x)
{
LL n = MOD-2;
LL res=1;
while(n>0)
{
if(n & 1)
res=res*x%MOD;
x=x*x%MOD;
n>>=1;
}
return res%MOD;
}
LL C(LL n,LL m)
{
if(m < 0)return 0;
if(n < m)return 0;