题解:根据题目意思,x1+x2+...+xm = k;0 <= xi <= n-1;即整数分解。
如果xi没有没有限制的话,用插板法,相当于k个苹果被装入m个篮子中,因此我们需要将k个苹果分为m-1分,也就是插入m-1块板子;如果xi > 0,一头一尾不能插板子,就是向k-1个位置当中插入m-1块板子,则结果为。如果xi >= 0,一个位置只能放一个板子,所以无法在收尾插入多块板子,即无法处理xi多个0出现的情况,所以我们将篮子与苹果混合,然后在k+m-1个位置中确定m-1个篮子的位置,则结果为。
如果xi如题所说限制,我们假设有c个超过限制的(x' >= n),现在进行一个操作,将所有超过限制的x减去n,则原来的问题x1+x2+...+xm = k;转化为:x′1+x′2+..+x′m = k−n∗c;原来xi为可能大于等于n的,转化之后所有的x'i都大于等于0,这便是之前没有限制的子问题,可以用上述方法来解决。但我们这里假设的是c个,所以还需要用容斥原理。如果c为偶数就做加法,c为奇数就做减法。最后的结果为。
代码实现:
需要用到的知识:
1、乘法逆元
2、快速幂
3、容斥原理
这里有几个需要注意的地方
1、根据题目mod的范围,此题需要预处理,否则会超时。
2、求余做减法时,要加上mod。
3、预处理乘法逆元的时候,是根据该推导而来,m!的mod次方 = (m-1)!的mod次方 * m的mod次方。
5、数组开大一点。
AC代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<vector>
#define LL long long
#define maxn 1000000
using namespace std;
const int MOD = 998244353;
LL fact[maxn+5]; //阶乘
LL a[maxn+10]; // 乘法逆元
//LL inv[maxn+10]; //快速幂
LL pow(LL x)
{
LL n = MOD-2;
LL res=1;
while(n>0)
{
if(n%2==1)
res=res*x%MOD;
x=x*x%MOD;
n>>=1;
}
return res;
}
void init(){
a[0] = a[1] = 1;
fact[0] = fact[1] = 1;
// inv[1] = 1;
for(int i = 2; i <= 1000005; i++)
{
fact[i] = fact[i-1] * i % MOD;
a[i] = a[i-1] * pow(i) % MOD; //m!的MOD次方 = (m-1)!的MOD次方 * m的MOD次方
// inv[i] = (MOD - MOD/i)*inv[MOD%i]%MOD;
// a[i] = a[i-1] * inv[i] % MOD;
}
}
LL C(int n, int m){ //乘法逆元
if(n<0||m<0||n<m)return 0;
return fact[n]*a[n-m]%MOD*a[m]%MOD;
}
int main()
{
int T,n,m,k;
LL ans;
init();//预处理
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
ans = 0;
for(int i = 0; i <= k/n; i++)//容斥原理
{
if(i & 1)
ans = (ans + MOD - ((C(m,i)%MOD)*(C(k+m-1-n*i,m-1)%MOD))%MOD)%MOD;//负数求模要加上MOD
else
ans = (ans + ((C(m,i)%MOD)*(C(k+m-1-n*i,m-1)%MOD))%MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}