点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
下面的职位会按照简历和面试情况,调整为普通校招或者“理想+”校招,因此有相关经验的同学,都可以投递。
可直接扫描二维码投递,或者简历发至邮箱:sunhaiyang@lixiang.com
职位1:
职位描述
“理想+”是为海内外高校杰出应届毕业生打造的招聘专项,我们期待每一个乐于钻研、敢想敢做、充满潜能的你加入我们,和我们一同探索和突破智能电动车领域的关键性技术问题,拥抱前沿科技和先进生产力,造福我们服务的每一个家庭,以及家庭里的每一位成员。
参与预研理想汽车下一代自动驾驶大模型算法方案并实现车云平台的部署落地;
参与大模型相关的数据研发、模型研发和模型部署等工作;
跟踪最新的自动驾驶和人工智能相关技术动态,对可应用于自动驾驶的新技术进行技术调研和原型验证;
参与关键技术的专利撰写和论文发表等工作。
职位要求
应用数学、计算机视觉、模式识别、机器学习、电子信息、机器人等相关专业的硕士/博士或者同等工作经验;
有使用多模态大模型或 LMM(如GPT、BERT等)处理复杂问题的经验优先;
有使用 NeRF、3D 场景生成和传感器仿真等相关科研或应用经验优先;
有自动驾驶或者机器人相关工程经验优先,包括但不限于感知、预测、规划控制等;
深入了解数据结构、算法、并行编程、代码优化和大规模数据处理等相关知识,至少精通 C/C++ 或 Python 编程,有ACM经验者优先;
有计算机视觉及模式识别领域顶会(CVPR/ICCV/ECCV/ICML/NeurIPS)或顶刊(TPAMI/IJCV/TIP)者优先,有顶级学术比赛成果或实际工程项目经验者优先。
Base地:
北京/深圳/上海
职位2:
职位描述
“理想+”是为海内外高校杰出应届毕业生打造的招聘专项,我们期待每一个乐于钻研、敢想敢做、充满潜能的你加入我们,和我们一同探索和突破智能电动车领域的关键性技术问题,拥抱前沿科技和先进生产力,造福我们服务的每一个家庭,以及家庭里的每一位成员。
负责自动驾驶端到端模型设计和研发,解决L4交通场景下的交互决策、轨迹规划问题;
跟踪最新的自动驾驶和人工智能技术动态,进行技术调研和快速验证。
职位要求
具备扎实的统计学习理论基础和丰富深度学习实践经验,具备数据驱动方面决策、规划方面研发经历,强化学习背景者优先;
深入了解数据结构、算法,有大规模数据处理相关知识,至少精通一门 c++/python编程;
熟悉常用的深度学习开源框架,如PyTorch、TensorFlow等,要求熟悉至少对其中一种框架,有实际部署经验;
有至少1篇机器学习/模式识别/人工智能(ICML/NIPS/AAAI/IJCAI)或顶刊论文,有顶级学术比赛成果或实践工程经验者优先。
Base地:
北京/上海
以上内容均出自《自动驾驶之薪知识星球》
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!