自动驾驶转具身智能的方向有哪些?

这几天很多同学后台私信我们,自动驾驶如何转具身智能?会不会有比较大的gap。从算法维度上看,具身智能领域基本延续了机器人和自驾的一些算法,比如训练与微调方式、大模型。当然也有很多具体的任务不太一样,比如数据采集方式、重执行硬件与结构。

我们也创办了一个具身智能全栈学习社区:具身智能之心,平时分享了很多具身智能相关的算法、数据采集、软硬件方案等。主要方向涉及VLA、VLN、Diffusion Policy、强化学习、机械臂抓取、位姿估计、机器人仿真、多模态大模型、芯片部署、sim2real、机器人硬件结构等,日常也分享了很多行业与招聘相关内容。

如果您真的需要,可以关注下我们的公众号,助力学习少踩坑。

### 具身智能自动驾驶融合的研究及应用 #### 实现方式 随着大模型技术的发展,未来的方向之一在于探索如何将大模型与具身智能相结合,从而实现更高级别的感知、决策以及行动能力[^2]。具体来说: - **多模态感知**:通过集成多种传感器(如激光雷达、摄像头等),构建更加精确的环境模型,使车辆能够更好地理解和预测周围环境的变化。 - **强化学习框架的应用**:利用深度强化学习算法训练自动驾驶系统,在模拟环境中不断优化策略,提高应对各种路况的能力。 ```python import gym from stable_baselines3 import PPO env = gym.make('CarRacing-v0') model = PPO('CnnPolicy', env, verbose=1) model.learn(total_timesteps=int(2e5)) ``` - **自然语言处理(NLP)**:引入NLP模块使得汽车不仅能听懂乘客指令还能主动提供出行建议或解释当前操作逻辑,增强用户体验感。 #### 技术挑战 然而,在这一过程中也面临着诸多技术和实际部署层面的困难: - **计算资源需求巨大**:为了支持复杂的AI运算,需要强大的硬件设施作为支撑;同时也要考虑成本效益比的问题。 - **安全性和可靠性保障不足**:即使是在测试阶段表现良好的方案,在真实世界里也可能遇到未曾预料的情况,因此必须建立严格的安全机制来防止意外发生。 - **法律法规滞后于技术创新速度**:现有法规往往无法及时跟上快速发展的科技步伐,这给商业化落地带来了不确定性因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值