因为工作上的事情,最近情绪很不好。。

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

最近一位工作两三年的在星球里向我们提问关于他工作上的问题。

从去年开始,遇到这种问题的小伙伴越来越多,比较典型,也会是很多星友的问题。星主也给出了自己的建议,这里分享给大家,希望对大家有帮助:

下面是星球里同学的提问:

萌主你好,自己毕业两年多了,最近对工作越来越迷茫,情绪也比较低落,总感觉自己跟不上现在工作的节奏,技术上这一年也没什么成长,一直在做低效的事情。

尤其是年后回来,工作内容方向又有比较大的变动。加上最近绩效沟通也废了,现在非常想摆烂等裁员,可是看到去年X想那波裁员的小伙伴,找工作都不太顺利。自己也下不了决心,继续苟着也很痛苦。。。。

这两年,打杂的事情比较多,成长吧也有,但和同期的校招生比起来总感觉差了一些。外面了解了一圈好去处比较有限,而且比在这里还卷,还都是做端到端、大模型这种最前沿的技术方向,自己也没有从事过相关的工作。

这几天痛定思痛,觉得自己不能再这样下去了,都快把自己整抑郁了。但也没有很好的破局方法,我这种情况该怎么办呢?萌主有没有什么建议?

萌主的回答:同学你好,你的问题其实我也遇到过,尤其是在工作两三年之后。现在回过头来看,这种心态其实就是拧巴。。。

在这个时间段,身边的同学或多或少开始跳槽到其他公司。自己呢,原有的工作内容比较熟悉了开始进入倦怠期,同时呢又有一些不愿跳出舒适圈,不太想接触新鲜事物,既有面对未知事物或者说不确定性的害怕,又知道只有挑战自己才能成长。总之,还没想好自己要什么。

正好赶上这个时机,工作内容上有比较大的变动,借着外部因素你不得不做抉择。这既是挑战也是机遇!你现在处于一个非常关键的时期,从整个人生的角度来说,价值观世界观正趋于成熟,现在的选择很有可能对未来相当长的一段时间都有影响。

首先我非常建议你放松一下,你想想你人生二十多年来遇到最大的挫折都扛过来了,无论过程多么艰难、多么痛苦,但总归是扛过来了。所以从目标上我们要建立起困难一定会渡过的认知。没什么大不了的,一份工作而已,失业了还有爸妈,还有朋友,还有这么多关心你的人,他们才是你这辈子最宝贵的财富。先把后路找好,就有底气,面对未知就不会害怕。

其次,拧巴的时候多去和外界接触,看看不同的人如何面对相似的问题,多听但不要多想,多看书多散步,尽可能的先脱离拧巴的状态,而上面说的这些方法都可以让你更积极。这么积累一段时间后,就知道该如何做了。认识到现在的状态是事物正常的发展规律,认识到你所做所想所见都是为了更好的自己。

回到你的问题本身,破局之路的核心还是在自己。想多了全是问题,做多了都是答案!工作内容不满意主动和领导聊,当然首先要想清楚自己想做什么,能做什么,欠缺什么。对自己有更清醒的认知才能有具体的提升计划,不然都是纸上谈兵,行动起来!

我们可以往更好的方向努力,加油!

最后欢迎加入『自动驾驶之心知识星球』,加入后可获取自动驾驶最前沿的技术分享、求职内推和学习资料!

770dfc2607a524be03ebe623c8b15fe9.png 我和4000+小伙伴们等你来:自动驾驶之心知识星球,专为自动驾驶人开设的技术和心灵港湾,有难题这里有解决方案!我们熬夜总结了自动驾驶、大模型等方向里程碑工作、前沿报告和学习路线,读完一定会茅塞顿开。

新用户66元现金优惠!微信扫码领取

79cff86f19c7b3d42bf5672f63030b8b.png

22c99c670d7530572f659af2a8a3a901.png

e28a80d7c7432838af3d92bf451df979.png

00c22d58f46ce8169e68ce0db31e693e.png

b53eb04665a5d0f4847970792dd5e31f.png

574dac2a6720bd88e8887a166282b6c1.png

ba491604cca2c5cf835c5ddbd26f49a3.png

22efcd705f255c5729b993f21794bbc6.png

e110fc33c4c636accb32efa9841849d7.png

ba99f56f72135b66cf95478290789dc5.png

fb8c4e77d35d06964aa47bff20efcd6b.png

c958f0042a9f3f502389f7782fa35b06.png

现在加入,每天只需7毛钱就能拥有自动驾驶和大模型等领域知识库私人交流社区,我们每天都在更新的自动驾驶、大模型相关私域知识。

新用户66元现金优惠!微信扫码领取

2fd16c26f83e16737c039439cdc079f8.png

认识下我的星球

保持竞争力的前提是个人技术和视野要常用常新,要让自己能搞定一个或多个模块,要常和行业内人士交流(比如经常参加行业大佬的直播)。一起为智驾站台,一起相信智驾的未来!最后真心推荐大家加入『自动驾驶之心知识星球』!

🔥【我们是谁】
『自动驾驶之心知识星球』目前最大自动驾驶学习交流私域社区,会员近4000人,行业大咖云集,60+合伙人和嘉宾,有问必答。

🔥【星球内有什么】
🎓1、35+自动驾驶方向学习路线;
🎓2、自动驾驶各方向面试100问汇总;
🎓3、每月精选问答,已积累近1000+条;
🎓4、100+大咖直播分享回放视频;
🎓5、100+自动驾驶行业报告;
🎓6、100+精选行业书籍;
🎓7、更多惊喜在星球内。

🔥【加入星球能获得什么】
🎓1、免费获得几十位专业嘉宾的问题解答(有问必答)
🎓2、永久免费浏览、下载星球内容(目前6500+,每天更新,会员过期后,过期前的内容可继续免费浏览下载)
🎓3、所有自动驾驶之心的付费课程8折优惠(价值3000元)
🎓4、直播视频免费无限期回放(现有100+场行业直播,未来一年持续邀请大咖分享)
🎓5、免费赠送优质课程视频(多门)
🎓6、星球积分榜前10名,获得丰富现金奖励
🎓7、免费咨询求职招聘相关问题
🎓8、加入专属VIP群,获得最新资讯

『自动驾驶之心知识星球』已经近4000人了!说句心里话,作为长期排名前十,内容和活跃度超过99%的平台,我们倾注了全部心血,社区就像个孩子一样,在大家细心的照料下,终于长大成人了。我们给大家准备了一个现金优惠大礼包,绝对超值。

新用户66元现金优惠!微信扫码领取

f856c5466bef41c1d42f890242423d6b.png

自动驾驶之心知识星球,创办于2022年7月份,致力于打造为自动驾驶行业中的 ”黄埔军校“,目前已近4000人,聚集了近60+自动驾驶行业专家为大家答疑解惑。这是国内首个以自动驾驶技术栈为主线的交流学习社区,汇总了自动驾驶感知(目标检测、语义分割、车道线检测、BEV检测、Occupancy、在线地图、目标跟踪、多模态、多传感器融合等)、自动驾驶定位建图(高精地图、SLAM)、自动驾驶规划控制与预测、多传感器标定、端到端自动驾驶、自动驾驶仿真、自动驾驶开发、领域技术方案、AI模型部署落地等几乎所有子方向的学习路线!除此之外,还和数十家自动驾驶公司建立了1v1内推渠道,简历直达!这里可以自由提问交流,许多算法工程师和硕博日常活跃,解决问题!初衷是希望能够汇集行业大佬的智慧,在学习和就业上帮到大家!星球的每周活跃度都在国内前30,非常注重大家积极性的调度和讨论,欢迎加入一起成长!

星球内已经打磨出近30+的学习路线,涉及端到端自动驾驶、BEV感知、动态/静态障碍物检测、多传感器融合、多传感器标定、目标跟踪、模型部署与cuda加速、仿真等方向,沉淀了大量工程上的解决方案、学术上的优化思路!星球主要内容一览:

38fd391e286a03081dd79893e8b88dbd.png

这些热门技术方向,星球里面全都有!

现在自动驾驶技术迭代期越来越短,从原来的单目3D到BEV,再到OCC,再到大模型和端到端,高阶智驾现阶段的技术点已经比较清晰。

O、热门方向大佬视频分享

af246dd22ffbe73b26259006562485e0.png

318328b3508852c08ffb37f75b9371db.png

70a971601047df9a2e01d03cc7059585.png

3312c60619837130a639d22da82ce194.png

一、端到端自动驾驶


1.前沿工作

  • 【Senna: 一种将LVLM(Senna-VLM)与端到端模型(Senna-E2E)相结合的自动驾驶系统】对两个数据集的广泛实验表明,Senna在规划性能上达到了最先进的水平;

  • 【Ramble:具有强化学习的高交互交通场景中的端到端驾驶】Ramble在CARLA Leaderboard 2.0上实现了路线完成率和驾驶评分的最新性能;

  • 【CARLA中的端到端自动驾驶全面综述】讨论了基于CARLA的最先进实现如何通过各种模型输入、输出、架构和训练范式解决端到端自动驾驶中遇到的各种问题;

  • 【端到端预测和规划最新SOTA!一种用于端到端自动驾驶的新交互机制:PPAD】。


2.报告和行业大佬直播分享

c0601a8729820d24124fc33c67cc0eb4.png 1ae7ecf3e4fcbf6df1ca90f289f7335c.png 6c8382c6d7078aac99a6234e93c1c9e2.png

大模型


1.前沿工作

  • 【全面回顾当前关于L(V)LM在自动驾驶应用方面的研究】重点关注四个关键领域:模块化整合、端到端整合、数据生成和评估平台。

  • 【自动驾驶中的大语言模型(LLM4AD):概念、基准、仿真和实车实验】LLMs在提升自动驾驶技术各个方面的显著潜力,包括感知、场景理解、语言交互和决策;

  • 【基于 LLM 驱动的鲁棒 RL 自动驾驶数据合成与策略调整】RAPID能够有效将LLM的知识整合到缩减版的RL策略中,以高效、适应性强且鲁棒的方式运行;

  • 【大型语言模型会成为自动驾驶的灵丹妙药吗?】本文对LLM在自动驾驶系统中的潜在应用进行了详尽的分析。


2.报告和行业大佬直播分享

8d32d44dca6cc2b2de69f11e0ca3a4cf.png 01d5f1de6e3fcb46500cbebd41e5e437.png

BEV感知


1.前沿工作

  • 【nuScenes和nuScenes最新SOTA!】Focus on BEV: 基于自标定周期视图变换的单目BEV图像分割;

  • 【MambaBEV:一种基于mamba2的BEV目标检测】还采用了端到端的自动驾驶范式来测试该模型的性能。模型在nuScenes数据集上表现出了相当好的结果:基础版本达到了51.7%的NDS;

  • 【QuadBEV: 高效的多任务感知框架】它利用四个关键任务——3D目标检测、车道检测、地图分割和占用预测——之间共享的空间和上下文信息。

  • 【nuScenes-360和DeepAccident-360最新SOTA!】OneBEV:利用一幅全景图像进行鸟瞰语义建图!在nuScenes-360和DeepAccident-360上分别达到了51.1%和36.1%的mIoU,取得了最先进的性能。


2.报告和行业大佬直播分享

8e5fa885be0f199bfd2ffe0c90342e03.png 81c425ce22322eb6f3d1a7c5307c9a8d.png

Occupancy感知


1.前沿工作

  • 【OccLoff框架:旨在“学习优化特征融合”以进行3D占用预测】具体提出了一种稀疏融合编码器和熵掩模,该编码器可以直接融合3D和2D特征,从而提高模型的准确性,同时减少计算开销;

  • 【nuScenes最新占用预测SOTA! TEOcc: 一种基于Radar-相机多模态的时间增强占用预测网络】所提出的时间增强分支是一个即插即用的模块,能够轻松集成到现有的占用预测方法中以提升占用预测的性能;

  • 【SyntheOcc: 通过扩散模型生成的系统,它通过在驾驶场景中以占据标签为条件来合成真实感和几何控制的图像】

  • 【RELIOCC:一种旨在增强基于相机的占用网络可靠性的方法】首次从可靠性角度对现有的语义占用预测模型进行全面评估。显著提高了模型的可靠性,同时保持几何和语义预测的准确性。


2.报告和行业大佬直播分享

74aa9580f4e05daeb2ace61aa539c59f.png 047cb75bc049df96b39618df0e0f6e97.png 327c58b419983b12762c6ff5bd13f5e8.png

世界模型


1.前沿工作

  • 【探索自动驾驶中视频生成与世界模型之间的相互作用:一项调查】探讨了这两种技术之间的关系,重点分析它们在结构上的相似性,尤其是在基于扩散的模型中,如何促进更准确和一致的驾驶场景模拟;

  • 【从有效多模态模型到世界模型:探讨了MLMs的最新发展和挑战,强调它们在实现人工通用智能和作为通向世界模型的路径中的潜力】;

  • 【nuPlan闭环规划新SOTA!AdaptiveDriver:一种基于模型预测控制(MPC)的规划器,可以根据BehaviorNet的预测展开不同的世界模型】将测试误差从6.4%减少到4.6%,即使应用于从未见过的城市;

  • 【Vista:一个具有高保真度和多功能可控性的可泛化驾驶世界模型!】通过高效的学习策略,结合了一套多功能的控制方法,从高层次的意图(命令、目标点)到低层次的操作(轨迹、角度和速度),在超过70%的比较中优于最先进的通用视频生成器,并且在FID上超过最佳驾驶世界模型55%,在FVD上超过27%。


2.报告和行业大佬直播分享

da3661bcd011676764aae630c53fd247.png 0e3ce42acfeedfd31762a9d868b9cf04.png 140d91395ac7c73d4365b89efe2b890c.png

自动驾驶仿真


1.前沿工作

  • 【IGDrivSim,一个基于Waymax仿真器的基准】证明人工专家与自动驾驶智能体之间的感知差距会妨碍安全和有效驾驶行为的学习;

  • 【WorldSimBench:双重评估框架来评估世界仿真器】包括显式感知评估和隐式操作评估,涵盖了从视觉角度的人工偏好评估和具身任务中的动作级评估,涉及三个代表性的具身场景:开放式具身环境、自动驾驶和机器人操作;

  • 【CARLA2Real,这是一个易于使用的公共工具(插件),适用于广泛使用的开源CARLA仿真器】;

  • 【2024最新,自动驾驶框架和仿真器综述】本文回顾了开源和商业自动驾驶框架及仿真器,介绍并比较了它们的特点和功能等,还从硬件不足、自动驾驶算法、场景生成、V2X、安全与性能以及联合仿真等角度,提出了AD框架和仿真器在近期未来的有前景的研究方向。


2.报告和行业大佬直播分享

ce23bd48784ee76d68eb0b850d34c13c.png 0188dd8684d413f7df00bddbbfd61f64.png fb0e7a9085207cf3a0c4aab903c2250c.png

本文内容均出自『自动驾驶之心知识星球』,欢迎加入交流!这里已经汇聚了近4000名自动驾驶从业人员,每日分享前沿技术、行业动态、岗位招聘、大佬直播等一手资料!

新用户66元现金优惠!微信扫码领取

e333f4d275be992c0a6cdcbb1097ab6b.png

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值