ICRA‘25 | 基于扩散的生成模型实现自动驾驶中3D占用预测

作者 | 自动驾驶专栏 来源 | 自动驾驶专栏

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心『扩散模型』技术交流群

本文只做学术分享,如有侵权,联系删文

  • 论文链接:https://arxiv.org/pdf/2505.23115

摘要

本文介绍了基于扩散的生成模型实现自动驾驶中3D占用预测。从视觉输入中准确预测3D占用网格对于自动驾驶是至关重要的,但是当前判别式方法难以处理带有噪声的数据、非完整的观测结果以及3D场景中固有的复杂结构。本项工作将3D占用预测重新定义为使用扩散模型的生成建模任务,其学习底层数据分布并且结合3D场景先验。该方法增强了预测一致性和噪声鲁棒性,并且更好地处理了3D空间结构的复杂性。本文大量实验表明,基于扩散的生成模型优于最先进的判别式方法,它提供了更逼真、更准确的占用预测结果,特别是在遮挡或者低能见度区域。此外,改进的预测结果明显有利于下游规划任务,突显了本文方法在现实世界自动驾驶应用中的实际优势。

主要贡献

本文的主要贡献总结如下:

1)本文将占用预测作为一个“先生成建模,然后条件采样”的过程,从中总结了与判别式方法相比的四个具有吸引力的性质;

2)本文探索了利用条件生成建模来实现占用预测任务的五个关键设计方面;

3)本文通过大量实验证明,结合扩散模型可以显著提高占用预测的性能。本文方法生成的占用特征也有利于下游规划任务。

论文图片和表格

总结

本文实验证明了Diffocc在具有挑战性的场景中具有卓越的性能,它提供了更准确、更逼真的预测结果。这一改进不仅增强了感知能力,还有利于下游规划任务,突出了生成建模对于改进自动驾驶系统的潜力。

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程

端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值