数字图像处理100问—31 仿射变换(Afine Transformations)——倾斜

本文介绍了如何使用OpenCV进行数字图像处理,通过仿射变换实现图像的X-sharing、Y-sharing和两者结合,倾斜30度。步骤包括读取图像、定义变换参数、执行仿射变换并保存结果。适合CV初学者理解基本的图像变换原理。
摘要由CSDN通过智能技术生成

提示:内容整理自:https://github.com/gzr2017/ImageProcessing100Wen
CV小白从0开始学数字图像处理

31 仿射变换(Afine Transformations)——倾斜

  1. 使用仿射变换,输出(1)那样的x轴倾斜30度的图像(dx=30),这种变换被称为X-sharing
  2. 使用仿射变换,输出(2)那样的y轴倾斜30度的图像(dy=30),这种变换被称为Y-sharing
  3. 使用仿射变换,输出(3)那样的x轴、y轴都倾斜30度的图像(dx = 30, dy = 30)。

原图像的大小为hxw,使用下面各式进行仿射变换。

(1) X-sharing                  (2) Y-sharing
   a = dx / h                     a = dy / w

  x'       1 a tx    x           x'       1 0 tx    x
[ y' ] = [ 0 1 ty ][ y ]       [ y' ] = [ a 1 ty ][ y ]
  1        0 0  1    1           1        0 0  1    1

代码如下:

1.引入库

CV2计算机视觉库

import cv2
import numpy as np
import matplotlib.pyplot as plt

2.读入数据

_img = cv2.imread("imori.jpg").astype(np.float32)
H, W, C = _img.shape

3.倾斜

dx = 30.
dy = 30.
a = 1.
b = dx / H
c = dy / W
d = 1.
tx = 0.
ty = 0.

img = np.zeros((H+2, W+2, C), dtype=np.float32)
img[1:H+1, 1:W+1] = _img

H_new = np.ceil(dy + H).astype(np.int)
W_new = np.ceil(dx + W).astype(np.int)
out = np.zeros((H_new, W_new, C), dtype=np.float32)

x_new = np.tile(np.arange(W_new), (H_new, 1))
y_new = np.arange(H_new).repeat(W_new).reshape(H_new, -1)

adbc = a * d - b * c
x = np.round((d * x_new  - b * y_new) / adbc).astype(np.int) - tx + 1
y = np.round((-c * x_new + a * y_new) / adbc).astype(np.int) - ty + 1

x = np.minimum(np.maximum(x, 0), W+1).astype(np.int)
y = np.minimum(np.maximum(y, 0), H+1).astype(np.int)

out[y_new, x_new] = img[y, x]
out = out.astype(np.uint8)

4.保存结果

cv2.imshow("result", out)
cv2.waitKey(0)
cv2.imwrite("out.jpg", out)

5.结果

在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值