提示:内容整理自:https://github.com/gzr2017/ImageProcessing100Wen
CV小白从0开始学数字图像处理
21 直方图归一化( Histogram Normalization )
直方图会存在偏差。比如说,数据集中在 0 处(左侧)的图像全体会偏暗,数据集中在255 处(右侧)的图像会偏亮。如果直方图有所偏向,那么其动态范围( dynamic range )就会较低。为了使人能更清楚地看见图片,让直方图归一化、平坦化是十分必要的。
这种归一化直方图的操作被称作灰度变换(Grayscale Transformation)。像素点取值范围从 [c,d] 转换到 [a,b] 的过程由下式定义。这回我们将图片的灰度扩展到 [0, 255] 范围。
xout = { a (xin < c)
(b-a)/(d-c) * (xin-c) + a (c <= xin <= d)
b (d < xin)
代码如下:
1.引入库
CV2计算机视觉库
import cv2
import numpy as np
import matplotlib.pyplot as plt
2.读入数据
img = cv2.imread("imori_dark.jpg").astype(np.float)
H, W, C = img.shape
3.Trans [0, 255]
a, b = 0., 255.
vmin = img.min()
vmax = img.max()
out = img.copy()
out[out<a] = a
out[out>b] = b
out = (b-a) / (vmax - vmin) * (out - vmin) + a
out = out.astype(np.uint8)
5.直方图展示
plt.hist(img.ravel(), bins=255, rwidth=0.8, range=(0, 255))
plt.savefig("out.png")
plt.show()