数字图像处理100问—21 直方图归一化( Histogram Normalization )

提示:内容整理自:https://github.com/gzr2017/ImageProcessing100Wen
CV小白从0开始学数字图像处理

21 直方图归一化( Histogram Normalization )

直方图会存在偏差。比如说,数据集中在 0 处(左侧)的图像全体会偏暗,数据集中在255 处(右侧)的图像会偏亮。如果直方图有所偏向,那么其动态范围( dynamic range )就会较低。为了使人能更清楚地看见图片,让直方图归一化、平坦化是十分必要的。

这种归一化直方图的操作被称作灰度变换(Grayscale Transformation)。像素点取值范围从 [c,d] 转换到 [a,b] 的过程由下式定义。这回我们将图片的灰度扩展到 [0, 255] 范围。

xout = {  a                         (xin < c)
         (b-a)/(d-c) * (xin-c) + a  (c <= xin <= d)
          b                         (d < xin)

代码如下:

1.引入库

CV2计算机视觉库

import cv2
import numpy as np
import matplotlib.pyplot as plt

2.读入数据

img = cv2.imread("imori_dark.jpg").astype(np.float)
H, W, C = img.shape

3.Trans [0, 255]

a, b = 0., 255.

vmin = img.min()
vmax = img.max()

out = img.copy()
out[out<a] = a
out[out>b] = b
out = (b-a) / (vmax - vmin) * (out - vmin) + a
out = out.astype(np.uint8)

5.直方图展示

plt.hist(img.ravel(), bins=255, rwidth=0.8, range=(0, 255))
plt.savefig("out.png")
plt.show()

在这里插入图片描述

4.结果

在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值