https://leetcode-cn.com/problems/coin-change/
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
把这题当作dp题练习
# 定义dp[i]表示什么,表示可以凑成金额为i的最小次数
# coins=[1,2,5],amount=11
# dp[i]=min(dp[i-cost_j])
# 比如此次这个11,min(dp[11-1],dp[11-2],dp[11-5])+1
# 思路是什么?
def min_coins(coins: list[int], amount: int) -> int:
dp = (amount + 1) * [-1]
dp[0] = 0
for i in range(1, amount + 1):
ans = 0
# 找到min(i-cost[j])+1
for cost in coins:
if i - cost < 0: # 处理凑不足以及coins无序状态
continue
# 可能凑得齐 dp[i - cost] >= 0
# dp[i - cost]>0,表示能够到达i,i - cost有效
ans = (dp[i - cost] + 1 if dp[i - cost] >= 0 else -1)
# ans 是正数,ans也有可能是-1.dp也有可能是正数,也有-1
# 当都是正数,可以比较大小。
# 当最新的大于0,而dp[i]==-1,则表示可以到达,则ans替换掉dp[i]
# 当ans==-1,表示i-cost[j]不可到达。则不用跟新dp[i]
if ans >= 0 and dp[i] >= 0:
dp[i] = min(ans, dp[i])
else:
dp[i] = ans if ans >= 0 else dp[i]
return dp[amount]
if __name__ == "__main__":
coins = [1]
amount = 1
ans = min_coins(coins, amount)
print(ans)