1、简介
图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。
2、图像拼接处理步骤
图像配准(image alignment)和图像融合是图像拼接的两个关键技术。图像配准是图像融合的基础,而且图像配准算法的计算量一般非常大,因此图像拼接技术的发展很大程度上取决于图像配准技术的创新。早期的图像配准技术主要采用点匹配法,这类方法速度慢、精度低,而且常常需要人工选取初始匹配点,无法适应大数据量图像的融合。图像拼接的方法很多,不同的算法步骤会有一定差异,但大致的过程是相同的。一般来说,图像拼接主要包括以下五步:
(1)、图像预处理
包括数字图像处理的基本操作(如去噪、边缘提取、直方图处理等)、建立图像的匹配模板以及对图像进行某种变换(如傅里叶变换、小波变换等)等操作。
(2)、图像配准
就是采用一定的匹配策略,找出待拼接图像中的模板或特征点在参考图像中对应的位置,进而确定两幅图像之间的变换关系。
(3)、建立变换模型
根据模板或者图像特征之间的对应关系,计算出数学模型中的各参数值,从而建立两幅图像的数学变换模型。
(4)、统一坐标变换
根据建立的数学转换模型,将待拼接图像转换到参考图像的坐标系中,完成统一坐标变换。
(5)、融合重构
将待拼接图像的重合区域进行融合得到拼接重构的平滑无缝全景图像。
3、opencv拼接图像类Stitcher
(1)、创建拼接对象:Stitcher stitcher = Stitcher::createDefault(); //参数 true:表示尝试用GPU加速 false:表示不用GPU加速
(2)、设置参数和拼接算法:
sti