学术研究
慢吞吞的倒霉熊
坚持!认真!
展开
-
受限玻尔兹曼机的基础知识<二>
重构但在本教程中,我们将重点关注受限玻尔兹曼机如何在无监督情况下学习重构数据(无监督指测试数据集没有作为实际基准的标签),在可见层和第一隐藏层之间进行多次正向和反向传递,而无需加大网络的深度。在重构阶段,第一隐藏层的激活值成为反向传递中的输入。这些输入值与同样的权重相乘,每两个相连的节点之间各有一个权重,就像正向传递中输入x的加权运算一样。这些乘积的和再与每个可见层的偏差相加,所得结果就是重构值,亦转载 2016-11-23 18:16:13 · 780 阅读 · 0 评论 -
受限玻尔兹曼机基础教程<一>
受限玻尔兹曼机基础教程<一>定义与结构受限玻尔兹曼机(RBM)由Geoff Hinton发明,是一种用于降维、分类、回归分析、协同过滤、特征学习和主题建模的算法。 我们首先介绍受限玻尔兹曼机这类神经网络,因为它相对简单且具有重要的历史意义。下文将以示意图和通俗的语言解释其运作原理。RBM是有两个层的浅层神经网络,它是组成深度置信网络的基础部件。RBM的第一个层称为可见层,又称输入层,而第二个层转载 2016-11-23 17:32:55 · 829 阅读 · 0 评论