原题链接: AcWing 795. 前缀和
输入一个长度为 n 的整数序列。
接下来再输入 m 个询问,每个询问输入一对 l,r。
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。
输入格式
第一行包含两个整数 n 和 m。
第二行包含 n 个整数,表示整数数列。
接下来 m 行,每行包含两个整数 l 和 r,表示一个询问的区间范围。
输出格式
共 m 行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n,
1≤n,m≤100000,
−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
一维前缀合常用公式:
ai 表示数组中第i个数、si表示为前i个数之和
s[i]
= a[1] + a[2] + ……+ a[i] =s[i-1] + a[i]
- [l, r]区间内数的和:
s[r] - s[l-1]
(为了当l=1时不需要进行特判。规定s[0]记为0,且读入数组的时候从下标1开始记录)
C++代码:
#include <iostream>
using namespace std;
int n, m;
const int maxn = 1e5 + 10;
int s[maxn], a[maxn];
int main(){
cin >> n >> m;
s[0] = 0;
for(int i = 1; i <= n; i ++ ){ //下标要从1开始
cin >> a[i];
s[i] = a[i] + s[i-1];
}
while(m--){
int l, r;
cin >> l >> r;
cout << s[r] - s[l-1]<< endl;
}
return 0;
}
python3代码:
if __name__=='__main__':
# 读入n m
n, m = map(int, input().split())
# 读入原始数组
nums = list(map(int, input().split()))
# 预处理前缀合数组
prefix = [0] * (n + 10)
for i in range(n):
prefix[i + 1] = prefix[i] + nums[i]
# m个询问
for j in range(m):
l, r = map(int, input().split())
print(prefix[r] - prefix[l - 1])
复杂度分析:
- 时间复杂度:O(n),遍历的同时维护前缀和数组,输出是O(1)的
- 空间复杂度:O(n),需要维护一个长度为n的前缀和数组