原题链接: AcWing 788.逆序对的数量
关键词: 归并排序
给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数 n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000,
数列中的元素的取值范围 [1,109]。
输入样例:
6
2 3 4 5 6 1
输出样例:
5
思路:
将数组等分为两个区间,逆序对的情况无非有三种:都在左半边、都在右半边、左边一个右边一个
先假设归并排序merge_sort(l, r)
已经能区间[l, r]
内求出逆序对的数量
那么都在左边以及都在右边的情况递归两个子区间就可以了
那么如何求一左一右情况下的逆序对呢?
归并排序中归并的那一步的做法是,用两个指针,每次选择两个数中小的那个,加入到归并完的数组中,则a[i] > a[j]
的情况就是逆序对的情况,此时后面的元素都与a[j]构成逆序对,个数为mid - i + 1
因此,每当遇到a[i] > a[j]
的情况时,答案都加上mid - i + 1
即可
注意:
数组的长度最多为105,当数组完全逆序时,逆序对数量最大。此时逆序对的数量有:
n-1 + n-2 + …… + 1 ,为n2级别,n最多取到105,大概就有5 x 109,会爆int,因此需要用long long 来存
C++代码:
#include <iostream>
using namespace std;
typedef long long LL;
const int maxn = 100010;
int n;
int q[maxn], tmp[maxn];
// merge_sort返回从l到r所有逆序对的数量
LL merge_sort(int l, int r){
if(l >= r) return 0;
int mid = l + r >> 1;
LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);
// 归并的过程
int k = 0, i = l, j = mid + 1;
while(i <= mid && j <= r)
if(q[i] <= q[j]) tmp[k++] = q[i++];
else{
tmp[k++] = q[j++];
res += mid - i + 1;
}
// 扫尾
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];
// 把临时数组中的值放回去 i循环原数组 j循环临时数组
for(int i = l, j = 0; i <= r; i++, j++) q[i] = tmp[j];
return res;
}
int main(){
cin >> n;
for(int i = 0; i < n; i ++ ) cin >> q[i];
cout << merge_sort(0, n-1) << endl;
return 0;
}
复杂度分析:
- 时间复杂度:O(nlogn),就是归并排序的复杂度
- 空间复杂度:O(n),包含n个元素的临时数组tmp