AcWing 858.Prim算法求最小生成树

原题连接:AcWing 858.Prim算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在 重边自环边权可能为负数

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

方法一:Prim算法(朴素版)

思路:

dist[] 所有距离初始化为无穷

n次循环
t = 找到集合外到集合距离最近的点
t 加入集合
用t来更新其他点到集合的距离(djiskra是更新到起点的距离)

C++ 代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn = 510, INF = 0x3f3f3f3f;
int n, m;   // n结点数 m边数
int dist[maxn]; // dist记录顶点到集合的最小距离
int g[maxn][maxn];  // 稠密图 用邻接矩阵存储
bool st[maxn];  // 记录顶点是否在集合中

// prim算法 返回最小生成树的权值
int prim(){
    int res = 0;
    
    // 初始化 每个结点到集合的距离都为无穷
    memset(dist, 0x3f, sizeof dist);
    
    // n个循环
    for(int i = 0; i < n; i++ ){
        
        // 找到一个距离集合最近的点t
        int t = -1;
        for(int j = 1; j <= n; j++ ){
            if(!st[j] && (t == -1 || dist[j] < dist[t]))
                t = j;
        }
        
        // 如果不是第一次 但找到的最小的边都是无穷 说明不存在最小生成树
        if(i && dist[t] == INF) return INF;
        
        // 将t加入集合
        if(i) res += dist[t];
        st[t] = true;
        
        // 利用t去更新其他点到集合的距离
        for(int j = 1; j <= n; j++ ){
            dist[j] = min(dist[j], g[t][j]);
        }
    }
    
    return res;
}

int main(){
    scanf("%d%d", &n, &m);
    
    // 初始化邻接矩阵
    memset(g, 0x3f, sizeof g);
    
    // 读入m条边
    while(m--){
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        // 无向图的边可以看做两个方向的弧
        // min()保证了取最小的边 解决了重边问题
        g[a][b] = g[b][a] = min(g[a][b], c);
    }
    
    int ans = prim();
    
    if(ans == INF) printf("impossible\n");
    else printf("%d\n", ans);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值