给定一个 n 个点 m 条边的无向图,图中可能存在 重边 和 自环 , 边权可能为负数 。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
方法一:Prim算法(朴素版)
思路:
dist[] 所有距离初始化为无穷
n次循环
t = 找到集合外到集合距离最近的点
t 加入集合
用t来更新其他点到集合的距离(djiskra是更新到起点的距离)
C++ 代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 510, INF = 0x3f3f3f3f;
int n, m; // n结点数 m边数
int dist[maxn]; // dist记录顶点到集合的最小距离
int g[maxn][maxn]; // 稠密图 用邻接矩阵存储
bool st[maxn]; // 记录顶点是否在集合中
// prim算法 返回最小生成树的权值
int prim(){
int res = 0;
// 初始化 每个结点到集合的距离都为无穷
memset(dist, 0x3f, sizeof dist);
// n个循环
for(int i = 0; i < n; i++ ){
// 找到一个距离集合最近的点t
int t = -1;
for(int j = 1; j <= n; j++ ){
if(!st[j] && (t == -1 || dist[j] < dist[t]))
t = j;
}
// 如果不是第一次 但找到的最小的边都是无穷 说明不存在最小生成树
if(i && dist[t] == INF) return INF;
// 将t加入集合
if(i) res += dist[t];
st[t] = true;
// 利用t去更新其他点到集合的距离
for(int j = 1; j <= n; j++ ){
dist[j] = min(dist[j], g[t][j]);
}
}
return res;
}
int main(){
scanf("%d%d", &n, &m);
// 初始化邻接矩阵
memset(g, 0x3f, sizeof g);
// 读入m条边
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
// 无向图的边可以看做两个方向的弧
// min()保证了取最小的边 解决了重边问题
g[a][b] = g[b][a] = min(g[a][b], c);
}
int ans = prim();
if(ans == INF) printf("impossible\n");
else printf("%d\n", ans);
return 0;
}