二叉查找树(英语:Binary Search Tree),也称为二叉搜索树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:
- 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
- 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 任意节点的左、右子树也分别为二叉查找树;
- 没有键值相等的节点。
二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为{\displaystyle O(\log n)}。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、multiset、关联数组等。
二叉查找树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉查找树的存储结构。中序遍历二叉查找树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉查找树变成一个有序序列,构造树的过程即为对无序序列进行查找的过程。每次插入的新的结点都是二叉查找树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索、插入、删除的复杂度等于树高,期望{\displaystyle O(\log n)},最坏{\displaystyle O(n)}(数列有序,树退化成线性表)。
虽然二叉查找树的最坏效率是{\displaystyle O(n)},但它支持动态查询,且有很多改进版的二叉查找树可以使树高为{\displaystyle O(\log n)},如SBT,AVL树,红黑树等。故不失为一种好的动态查找方法。
在二叉搜索树b中查找x的过程为:
- 若b是空树,则搜索失败,否则:
- 若x等于b的根节点的数据域之值,则查找成功;否则:
- 若x小于b的根节点的数据域之值,则搜索左子树;否则:
- 查找右子树。
向一个二叉搜索树b中插入一个节点s的算法,过程为:
- 若b是空树,则将s所指结点作为根节点插入,否则:
- 若s->data等于b的根节点的数据域之值,则返回,否则:
- 若s->data小于b的根节点的数据域之值,则把s所指节点插入到左子树中,否则:
- 把s所指节点插入到右子树中。(新插入节点总是叶子节点)
在二叉查找树删去一个结点,分三种情况讨论:
- 若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
- 若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树(当*p是左子树)或右子树(当*p是右子树)即可,作此修改也不破坏二叉查找树的特性。
- 若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令*p的左子树为*f的左/右(依*p是*f的左子树还是右子树而定)子树,*s为*p左子树的最右下的结点,而*p的右子树为*s的右子树;其二是令*p的直接前驱(in-order predecessor)或直接后继(in-order successor)替代*p,然后再从二叉查找树中删去它的直接前驱(或直接后继)。
#include<iostream>
using namespace std;
typedef struct
{
Node* left;
Node *right;
Node *p;
int key;
} Node;
class BStree
{
private:
Node*T;
public:
void INORED_TREE_WALK(Node* x)
{
INORED_TREE_WALK(x->left);
cout << x->key << " ";
INORED_TREE_WALK(x->right);
}
Node* Tree_Search(Node* x, int k)
{
while (x != NULL && k != x->key)
{
if (k < x->key)
x = x->left;
else
x = x->right;
}
return x;
}
Node * Tree_MIN(Node *x)
{
while (x->left != NULL)
{
x = x->left;
}
return x;
}
Node * Tree_MAX(Node *x)
{
while (x->right != NULL)
{
x = x->right;
}
return x;
}
Node * Tree_SUCCESSOR(Node *x)
{
if (x->right != NULL)
return Tree_SUCCESSOR(x->right);
Node *y = x->p;
while (y != NULL && y->right == x)
{
x = x->p;
y = x->p;
}
return y;
}
void Tree_Insert(Node *&T, Node *x)//T为树的根结点
{
Node *m = T;
Node *n = NULL;
while (m != NULL)
{
n = m;
if (x->key < m->key)
m = m->left;
else
m = m->right;
}
x->p = n;
if (m == NULL)
T = x;
else if (x->key < n->key)
n->left = x;
else
n->right = x;
}
void TRANSPLANT(Node *&T, Node *&v, Node *&u)
{
if (u->p == NULL)//防止出现u是根结点的情况
T = v;
else if (u = (u->p)->left)
v = (u->p)->left;
else if (u = (u->p)->left)
v = (u->p)->left;
if (v != NULL)//防止出现v是NULL的情况
v->p = u->p;
}
void Tree_Delete(Node *&T,Node *&x)
{
if (x->left == NULL)//第一种没有左子树
TRANSPLANT(T, x->right, x);
else if (x->right == NULL && x->left != NULL)//只有左子树
TRANSPLANT(T, x->left, x);
else//左右子树都有
{
Node *y = Tree_MIN(x->right);
if (y != x->right)
{
TRANSPLANT(T, y->right, y);
y->right = x->right;
x->right->p = y;
}
TRANSPLANT(T, y, x);
x->left->p = y;
y->left = x->left;
}
}
};