典型的最小路径问题,注意以下即可:
1.需设置一个数组记录到当前点的最小路径数,更新最小路径时,继承上一点的路径数即可,最小路径长度相等时,需要加上上一点的路径数。
2.需额外设置一个数组记录救护队的数目,并作为第二判断依据,在路径相等时,取最大值即可。
注:Dijkstra算法的大致流程:设定两个点集,一个为访问过的,一个为未访问的,每次从未访问的点集中取一点,并计算经过当前点后所有的路径长度变化,若变小,则更新当前的路径,详细描述请参考代码。
代码采用Dijkstra算法,c++代码如下:
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 510;
const int INF = 0x3fffffff; // 表示边不存在
int G[maxn][maxn], teamNum[maxn];
int vis[maxn];
int d[maxn], totalTeam[maxn], num[maxn];
int n, m, c1, c2;
void Dijkstra(int st)
{
//初始化
fill(d, d + maxn, INF);
fill(vis, vis + maxn, 0);
fill(totalTeam, totalTeam + maxn, 0);
fill(num, num + maxn, 0);
//起点初始状态
d[st] = 0;
totalTeam[st] = teamNum[st];
num[st] = 1;
//Dijkstra 主算法
for(int i = 0; i < n; i++)
{
//选取当前离已经过运算的点集最近的点
int u = -1, MIN = INF;
for(int j = 0; j < n; j++)
{
if(vis[j] == 0 && d[j] < MIN)
{
u = j;
MIN = d[j];
}
}
if(u == -1) return; //当前的连通分量中已无符合条件的点
vis[u] = 1;
for(int j = 0; j < n; j++)
{
if(vis[j] == 0 && G[u][j] != INF)
{
//经过当前点的路径更短时, 更新最短路径与救援队伍数量
if(d[j] > d[u] + G[u][j])
{
d[j] = d[u] + G[u][j];
num[j] = num[u]; //路径继承
totalTeam[j] = teamNum[j] + totalTeam[u];
}
//相等时, 考虑救援队伍数量
else if(d[j] == d[u] + G[u][j])
{
num[j] += num[u]; //加上当前u点的最小路径数
if(teamNum[j] + totalTeam[u] > totalTeam[j])
{
totalTeam[j] = totalTeam[u] + teamNum[j];
}
}
}
}
}
}
int main()
{
while(scanf("%d%d%d%d", &n, &m, &c1, &c2) != EOF)
{
//初始化
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
G[i][j] = INF;
for(int i = 0; i < n; i++)
{
scanf("%d", &teamNum[i]);
}
for(int i = 0; i < m; i++)
{
int st, ed, l;
scanf("%d%d%d", &st, &ed, &l);
G[st][ed] = G[ed][st] = l; // 注意无向图的处理
}
Dijkstra(c1);
printf("%d %d\n", num[c2], totalTeam[c2]);
}
return 0;
}