PAT (Advanced) 1003. Emergency (25)

原题:1003. Emergency (25)



典型的最小路径问题,注意以下即可:

1.需设置一个数组记录到当前点的最小路径数,更新最小路径时,继承上一点的路径数即可,最小路径长度相等时,需要加上上一点的路径数。

2.需额外设置一个数组记录救护队的数目,并作为第二判断依据,在路径相等时,取最大值即可。

注:Dijkstra算法的大致流程:设定两个点集,一个为访问过的,一个为未访问的,每次从未访问的点集中取一点,并计算经过当前点后所有的路径长度变化,若变小,则更新当前的路径,详细描述请参考代码。


代码采用Dijkstra算法,c++代码如下:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 510;
const int INF = 0x3fffffff; // 表示边不存在
int G[maxn][maxn], teamNum[maxn];
int vis[maxn];
int d[maxn], totalTeam[maxn], num[maxn];
int n, m, c1, c2;

void Dijkstra(int st)
{
    //初始化
    fill(d, d + maxn, INF);
    fill(vis, vis + maxn, 0);
    fill(totalTeam, totalTeam + maxn, 0);
    fill(num, num + maxn, 0);
    //起点初始状态
    d[st] = 0;
    totalTeam[st] = teamNum[st];
    num[st] = 1;
    //Dijkstra 主算法
    for(int i = 0; i < n; i++)
    {
        //选取当前离已经过运算的点集最近的点
        int u = -1, MIN = INF;
        for(int j = 0; j < n; j++)
        {
            if(vis[j] == 0 && d[j] < MIN)
            {
                u = j;
                MIN = d[j];
            }
        }

        if(u == -1) return; //当前的连通分量中已无符合条件的点
        vis[u] = 1;

        for(int j = 0; j < n; j++)
        {
            if(vis[j] == 0 && G[u][j] != INF)
            {
                //经过当前点的路径更短时, 更新最短路径与救援队伍数量
                if(d[j] > d[u] + G[u][j])
                {
                    d[j] = d[u] + G[u][j];
                    num[j] = num[u]; //路径继承
                    totalTeam[j] = teamNum[j] + totalTeam[u];
                }
                //相等时, 考虑救援队伍数量
                else if(d[j] == d[u] + G[u][j])
                {
                    num[j] += num[u]; //加上当前u点的最小路径数
                    if(teamNum[j] + totalTeam[u] > totalTeam[j])
                    {
                        totalTeam[j] = totalTeam[u] + teamNum[j];
                    }
                }
            }
        }
    }
}
int main()
{
    while(scanf("%d%d%d%d", &n, &m, &c1, &c2) != EOF)
    {
        //初始化
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                G[i][j] = INF;

        for(int i = 0; i < n; i++)
        {
            scanf("%d", &teamNum[i]);
        }

        for(int i = 0; i < m; i++)
        {
            int st, ed, l;
            scanf("%d%d%d", &st, &ed, &l);
            G[st][ed] = G[ed][st] = l; // 注意无向图的处理
        }

        Dijkstra(c1);
        printf("%d %d\n", num[c2], totalTeam[c2]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值