PAT (Advanced) 1098. Insertion or Heap Sort (25)

本文详细解析了1098号题目中的排序算法实现,通过对比插入排序和堆排序的过程,来判断给定的中间排序结果属于哪种算法。代码中包括了一次插入排序和一次堆排序的具体实现,并通过比较原始数组与排序后的数组来确定所使用的排序方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题:1098. Insertion or Heap Sort (25)



解题思路:

写好模拟一次堆排序或插入排序的函数即可,提高效率,判断是否为插入排序即可。

注:插入排序最后输出的排序序列必须与输入给的中间结果不同。


代码如下:

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 100 + 5;

int origin[maxn], temp[maxn];
int insertion[maxn], heap[maxn];
int n;
bool judge(int a[], int b[])
{
    for(int i = 1; i <= n; i++)
        if(a[i] != b[i]) return false;
    return true;
}

void OneTimeInsertionSort(int pos)
{
    sort(insertion+1, insertion+pos+1);
}

void OneTimeHeapSort(int pos)
{
    swap(heap[1], heap[pos]);
    int p = 1;
    while(2*p < pos)
    {
        if(2*p+1 < pos)
        {
            if(heap[2*p] < heap[2*p+1] && heap[p] < heap[2*p+1])
            {
                swap(heap[p], heap[2*p+1]);
                p = 2*p+1;
            }
            else if(heap[p] < heap[2*p])
            {
                swap(heap[p], heap[2*p]);
                p = 2*p;
            }
            else
                break;
        }
        else if(heap[p] < heap[2*p])
        {
            swap(heap[p], heap[2*p]);
                p = 2*p;
        }
        else
            break;
    }
}



int main()
{
    while(scanf("%d", &n) == 1)
    {
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &origin[i]);
            insertion[i] = origin[i];
        }
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &temp[i]);
            heap[i] = temp[i];
        }

        int flag = 0;
        for(int i = 2; i <= n; i++)
        {
            OneTimeInsertionSort(i);
            if(judge(temp, insertion))
            {
                flag = 1;
                int cnt = 1;
                while(judge(temp, insertion)) {OneTimeInsertionSort(i+cnt); cnt++;}
                break;
            }
        }
        if(flag)
        {
            printf("Insertion Sort\n");
            for(int i = 1; i <= n; i++)
                if(i == 1) printf("%d", insertion[i]);
                else printf(" %d", insertion[i]);
            printf("\n");
        }
        else
        {
            int pos = n;
            while(heap[pos] > heap[1]) pos--;
            OneTimeHeapSort(pos);
            printf("Heap Sort\n");
            for(int i = 1; i <= n; i++)
                if(i == 1) printf("%d", heap[i]);
                else printf(" %d", heap[i]);
            printf("\n");
        }
    }
    return 0;
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值