[Crypto RSA]刷题总结 23/10/31

FSCTF 2023 [ezRSA]

题目描述

from Crypto.Util.number import *
from secret import flag

def keygen(nbit = 64):
	while True:
		k = getRandomNBitInteger(nbit)
		p = k**6 + 7*k**4 - 40*k**3 + 12*k**2 - 114*k + 31377
		q = k**5 - 8*k**4 + 19*k**3 - 313*k**2 - 14*k + 14011
		if isPrime(p) and isPrime(q):
			return p, q

def encrypt(msg, n, e = 31337):
	m = bytes_to_long(msg)
	return pow(m, e, n)

p, q = keygen()
n = p * q
enc = encrypt(flag, n)
print(f'n = {n}')
print(f'enc = {enc}')
'''
n = 1901485114700245088118015176838411045645808657633721129158322425051110390237801115516544893309422501851747092251796770953642000579931231478667887589988786560834446696408732292786254192492281586457284980263740183
enc = 1199361436656854951826843585559905358018072076349745598865984504434921942249797269971584270541920348511243191511578321283455075109027873358983934024677982086699270397304699932717071144314481599892879445599516848
'''

解题思路

观察关键代码

		p = k**6 + 7*k**4 - 40*k**3 + 12*k**2 - 114*k + 31377
		q = k**5 - 8*k**4 + 19*k**3 - 313*k**2 - 14*k + 14011

同时, n = = p ∗ q n==p*q n==pq,这样我们可以得到关于 k k k的一元多次方程,我们求解这个方程,就能得到 k k k,进而得出 p , q p,q p,q破解RSA

解题代码

# sage 求解k
k=var('k')
p = k**6 + 7*k**4 - 40*k**3 + 12*k**2 - 114*k + 31377
q = k**5 - 8*k**4 + 19*k**3 - 313*k**2 - 14*k + 14011
n = 1901485114700245088118015176838411045645808657633721129158322425051110390237801115516544893309422501851747092251796770953642000579931231478667887589988786560834446696408732292786254192492281586457284980263740183

polys=(n==p*q)

print(solve(polys,k))

#k == 13070168166947995246
import gmpy2
import binascii

k = 13070168166947995246

p = k**6 + 7*k**4 - 40*k**3 + 12*k**2 - 114*k + 31377
q = k**5 - 8*k**4 + 19*k**3 - 313*k**2 - 14*k + 14011

e = 31337

phi=(p-1)*(q-1)
n = 1901485114700245088118015176838411045645808657633721129158322425051110390237801115516544893309422501851747092251796770953642000579931231478667887589988786560834446696408732292786254192492281586457284980263740183
c = 1199361436656854951826843585559905358018072076349745598865984504434921942249797269971584270541920348511243191511578321283455075109027873358983934024677982086699270397304699932717071144314481599892879445599516848

d=gmpy2.invert(e,phi)

m = pow(c,d,n)

print(binascii.unhexlify(hex(m)[2:]))

#flag{y0u_kn0w_th3_P0lyn0mialRing_w1th_RSA!!!}

FSCTF 2023 [ezmath]

题目描述

import libnum
from Crypto.Util.number import *
from secret import flag
m = libnum.s2n(flag)
e = 65537
p = getPrime(1024)
q = getPrime(1024)
n = p * q
c = pow(m, e, n)
hint = pow(2022 * p + 2023, q, n)
print(f'n={n}')
print(f'c={c}')
print(f'hint={hint}')
'''
n=16099847254382387482323197733210572595987701766995679577427964142162383113660616883997429365200200943640950821711084123429306946305893862414506257284441114840863787499898478803568113348661314216300658606282276936902117099898776435948501831796770856505782683585268617613575681655903107683069260253287994894440427511440504754827820494060133773435262418256886443037510658584541624614692050308222516337333585823733360631982795323752298740497235142977602602205292595197618229629610834651923388269194546316023246525302500676142502931303976146680655368617094100097945625676103639154884247373003120937959132698199043562660573
c=7980021929208497878634194663038470941705554065040985666635317762877799614984808729636911256912639929083920319066806111423231500122646366713245534616522235309310234767331344216892929739448126523171652425415458999098138841038319673380331281114806318366697490343176758140150118761408250366783210772381316729932361601257318131085116265135718477224618689710966570938280408341402386000281564650565256635313406111364916715660419153433573586809503564050585204002594864254089288672391014804368427324162776953191520483774116807593366091685560902424782104761523067998300887293902330501335485075609216897135678017158187880996872
hint=14005608544369156893681352040163362072608754453657200460825561123439158535855236943525558717120672888372079069187756549797113560863313618058077150885401191613229507892570378437310964624470055767463556516869604496669085622244233154871165554916349033197798790982409986216498996673603605465039336316170130644317728786516639634775709400754328137266154981484016505702738584209800158047120647468364899692021253904198509376650238372552486792709682170146695759196408908825447960637667502907929061819408441663880712891979320089482801220225451560809151067631824526463122992973388740015878474372614751149918455457191739542980396
'''

解题思路

注意到关键代码:

hint = pow(2022 * p + 2023, q, n)

进一步得到 h i n t = 202 3 q   m o d   p hint=2023^q\ mod \ p hint=2023q mod p
同时, 202 3 N = 202 2 ( p ∗ q ) 2023^N=2022^{(p*q)} 2023N=2022(pq),由费马定理得到 202 2 N = 202 2 q   m o d   p 2022^N=2022^q\ mod\ p 2022N=2022q mod p
所以 p   ∣   ( h i n t − 202 3 N ) p\ |\ (hint-2023^N) p  (hint2023N),同时 p   ∣   N p \ |\ N p  N。取二者最大公约数,可以得到 p p p,进而分解RSA

解题代码

import gmpy2
import binascii

n=16099847254382387482323197733210572595987701766995679577427964142162383113660616883997429365200200943640950821711084123429306946305893862414506257284441114840863787499898478803568113348661314216300658606282276936902117099898776435948501831796770856505782683585268617613575681655903107683069260253287994894440427511440504754827820494060133773435262418256886443037510658584541624614692050308222516337333585823733360631982795323752298740497235142977602602205292595197618229629610834651923388269194546316023246525302500676142502931303976146680655368617094100097945625676103639154884247373003120937959132698199043562660573
c=7980021929208497878634194663038470941705554065040985666635317762877799614984808729636911256912639929083920319066806111423231500122646366713245534616522235309310234767331344216892929739448126523171652425415458999098138841038319673380331281114806318366697490343176758140150118761408250366783210772381316729932361601257318131085116265135718477224618689710966570938280408341402386000281564650565256635313406111364916715660419153433573586809503564050585204002594864254089288672391014804368427324162776953191520483774116807593366091685560902424782104761523067998300887293902330501335485075609216897135678017158187880996872
hint=14005608544369156893681352040163362072608754453657200460825561123439158535855236943525558717120672888372079069187756549797113560863313618058077150885401191613229507892570378437310964624470055767463556516869604496669085622244233154871165554916349033197798790982409986216498996673603605465039336316170130644317728786516639634775709400754328137266154981484016505702738584209800158047120647468364899692021253904198509376650238372552486792709682170146695759196408908825447960637667502907929061819408441663880712891979320089482801220225451560809151067631824526463122992973388740015878474372614751149918455457191739542980396
e=65537
h=hint-pow(2023,n,n)
p=gmpy2.gcd(h,n)
q=n//p
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)

m = pow(c,d,n)

print(binascii.unhexlify(hex(m)[2:]))

#flag{ju3t_a_s1mpl3_ta3k} 

FSCTF 2023 [babyhint]

题目描述

import gmpy2
import libnum
import uuid
from secret import flag
m=libnum.s2n(flag)
p=libnum.generate_prime(512)
q=libnum.generate_prime(512)
e=65537
n=p*q
hint1=pow(2023*p+2022*q,1919,n)
hint2=pow(2022*p+2023*q,9191,n)
c=pow(m,e,n)
print("hint1=",hint1)
print("hint2=",hint2)
print("n=",n)
print("c=",c)
'''
hint1= 83535799515204730191288403119559179388147974968301357768644756769205396635068662150926873512812305514469213626273460486537390422570056287512841114712846420160416446291128064734960979586229744062965998582728378025151822479630618024804808407804317029367335421715125562402059266983021662398390585435529976586654
hint2= 14402204438484882372730843813561914135941866642278909172674395293274736617425618184831446215507756031454895377588951726822765439585979555636320832177929472057402274116190878688601329765374509467243968967279090492272317903230101551317377700802837187081510381677262879617929177970455244249498674083943925477229
n= 94120719816617297967197808458007462810449143149204454740678593087096770130918870563878599847276923902207042790106345400843990455347835029220453217996810995363105274873857381469314548191574754245357568090646094043040797653858225598519876785530143007788084656262253002478643994943076851585839631209338814367691
c= 84244594789418833202484965138308516535996015903654462304986953156471594657993252593373963514364258027091543394305491354187806441313428473670956684437253991594327692679733432489342255718685303997647293213324463025120804679847465190496542879161344985402542539184706559207299026102682674060562738496314731555616
'''

解题思路

import gmpy2
from Crypto.Util.number import *
import libnum
h1= 83535799515204730191288403119559179388147974968301357768644756769205396635068662150926873512812305514469213626273460486537390422570056287512841114712846420160416446291128064734960979586229744062965998582728378025151822479630618024804808407804317029367335421715125562402059266983021662398390585435529976586654
h2= 14402204438484882372730843813561914135941866642278909172674395293274736617425618184831446215507756031454895377588951726822765439585979555636320832177929472057402274116190878688601329765374509467243968967279090492272317903230101551317377700802837187081510381677262879617929177970455244249498674083943925477229
n= 94120719816617297967197808458007462810449143149204454740678593087096770130918870563878599847276923902207042790106345400843990455347835029220453217996810995363105274873857381469314548191574754245357568090646094043040797653858225598519876785530143007788084656262253002478643994943076851585839631209338814367691
c= 84244594789418833202484965138308516535996015903654462304986953156471594657993252593373963514364258027091543394305491354187806441313428473670956684437253991594327692679733432489342255718685303997647293213324463025120804679847465190496542879161344985402542539184706559207299026102682674060562738496314731555616
e=65537
h3 = pow(h2,1919,n)*pow(2023,9191*1919,n)-pow(h1,9191,n)*pow(2022,9191*1919,n)
p = gmpy2.gcd(h3,n)
q = n//p
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = pow(c,d,n)
print(libnum.n2s(int(m)))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值