2020牛客暑期多校训练营(第四场)——Basic Gcd Problem

本文介绍了Basic Gcd Problem的题目描述、输入输出格式、题目大意及题解思路,并提供了AC代码。该问题涉及到质因数分解和最大公约数的计算,通过观察公式并优化求解策略,可以得出最优解。
摘要由CSDN通过智能技术生成

Basic Gcd Problem


题目描述

输入描述

The input contains multiple test cases. The first line of input contains one integer T(1≤T≤10^6).

In the following T lines, each line contains two integers ni​,ci​ (1≤ni​,ci​≤10^6) describing one question.

输出描述

For each test case, output one integer indicating the answer.

输入

2
3 3
10 5

输出

3
25

题目大意

题解

观察公式,fc(x)其实是 c 的若干次方,且指数要尽量大。在最好的情况下,每次只消掉一个质因子。所以 fc (x)=c^x的质因子个数。

AC代码

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
const long long mod=1e9+7;
int T,c,n,a[1000010],prime[500010];
bool number[1000010];
void prime_factor(int x)
{
	if(a[x])return;
	for(int i=2;i*i<=x;i++)
		if(x%i==0)
		{
			prime_factor(x/i);
			a[x]=a[x/i]+1;
			return;
		}
	a[x]=1;
	return;
}//质因子个数 
long long pow_mod(long long a,long long b)
{
	long long ans=1,base=a%mod;
	while(b>0)
	{
		if(b&1!=0)ans=(ans*base)%mod;
		base=(base*base)%mod;
		b>>=1;
	}
	return ans;
}//带取模的快速幂 
int main()
{
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//	for(int i=2;i<=1000001;i++)
//	{
//		if(!number[i])prime[c++]=i;
//		for(int j=0;j<c&&prime[j]*i<=1000001;j++)
//		{
//			number[prime[j]*i]=1;
//			if(i%prime[j]==0)break;
//		}
//	}//素数筛 
	for(int i=2;i<=1000000;i++)prime_factor(i);
	cin>>T;
	while(T--)
	{
		cin>>n>>c;
		cout<<pow_mod(c,a[n])<<endl; 
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值