克鲁斯卡尔算法(最小生成树)

#include <iostream>
#include <string>
using namespace std;

typedef struct MGraph{
	string vexs[10];//顶点信息
	int arcs[10][10];//邻接矩阵
	int vexnum, arcnum;//顶点数和边数
}MGraph;

int LocateVex(MGraph G, string u)//返回顶点u在图中的位置
{
	for(int i=0; i<G.vexnum; i++)
		if(G.vexs[i]==u)
			return i;
	return -1;
}

void CreateUDN(MGraph &G)//构造无向网
{
	string v1, v2;
	int w;
	int i, j, k;
	cout<<"请输入顶点数和边数:";
	cin>>G.vexnum>>G.arcnum;

	cout<<"请输入顶点:";
	for(i=0; i<G.vexnum; i++)
		cin>>G.vexs[i];

	for(i=0; i<G.vexnum; i++)
		for(j=0; j<G.vexnum; j++)
			G.arcs[i][j]=1000;//初始化权值

	cout<<"请输入边和权值:"<<endl;
	for(k=0; k<G.arcnum; k++)
	{
		cin>>v1>>v2>>w;
		i=LocateVex(G, v1);
		j=LocateVex(G, v2);
		G.arcs[i][j]=G.arcs[j][i]=w;
	}
}

void Kruskal(MGraph G)//克鲁斯卡尔算法
{
	int set[10], i, j;
	int k=0, a=0, b=0, min=G.arcs[a][b];

	for(i=0; i<G.vexnum; i++)
		set[i]=i;//初态,各顶点分别属于各个集合

	cout<<"最小生成树的各条边为:"<<endl;

	while(k < G.vexnum-1)//最小生成树的边数等于顶点数-1
	{
		for(i=0; i<G.vexnum; i++)//寻找最小权值的边,无向网,只在上三角形中查找
			for(j=i+1; j<G.vexnum; j++)
				if(G.arcs[i][j] < min)
				{
					min=G.arcs[i][j];//最小权值
					a=i;//边的一个顶点
					b=j;//边的另一个顶点
				}

		min=G.arcs[a][b]=1000;//避免下次查找

		if(set[a]!=set[b])//边的两个顶点不属于同一集合
		{
			cout<<G.vexs[a]<<"-"<<G.vexs[b]<<endl;
			k++;//边数加1
			for(i=0; i<G.vexnum; i++)
				if(set[i]==set[b])//将顶点b所在集合并入顶点a集合
					set[i]=set[a];
		}
	}
}

void main()
{
	MGraph G;
	CreateUDN(G);
	Kruskal(G);
}



 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值