最大池化和平均池化的使用:map中的信息都应该有所贡献时使用avgpool,如图像分割中尝试用于global avgpool来获取全局上下文关系。avgpool常用在网络的深层,因为网络深层的高级语义信息一般都能帮助分类器分类。而为了减少无用信息的影响时采用maxpool,常用于网络浅层,因为最开始的层包含了较多的无关信息。也有一种观点认为,最大池化可以提取特征纹理,平均池化可以保留背景信息。这一点从数学计算式可以概略一二。
深度学习知识点
最新推荐文章于 2024-07-20 17:54:14 发布