深度学习知识点

最大池化和平均池化的使用:map中的信息都应该有所贡献时使用avgpool,如图像分割中尝试用于global avgpool来获取全局上下文关系。avgpool常用在网络的深层,因为网络深层的高级语义信息一般都能帮助分类器分类。而为了减少无用信息的影响时采用maxpool,常用于网络浅层,因为最开始的层包含了较多的无关信息。也有一种观点认为,最大池化可以提取特征纹理,平均池化可以保留背景信息。这一点从数学计算式可以概略一二。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值