aws 机器学习_AWS积累了机器学习服务

aws 机器学习

亚马逊推出了一系列适用于AWS的新机器学习服务。 新产品包括针对开发人员的AI服务,针对Amazon SageMaker的模型和算法,自动数据标记和强化学习服务,以及针对TensorFlow和其他熟悉的机器学习库的AWS优化版本。

现在普遍可用的新的AWS优化的TensorFlow产品允许TensorFlow作业在多个GPU驱动的EC2节点之间自动缩放和平衡。 亚马逊声称其对TensorFlow扩展的改进提高了数十个GPU的运营效率,与手动设置TensorFlow相比,可以更快地进行模型训练。

[避免机器学习失败: 使机器学习失败的6种方法 机器学习课程:5家公司分享了他们的错误 ]

另一项新的AWS产品可从大规模生成的模型中加快推理或预测的服务。 Amazon Elastic Inference从“所有流行的框架”(TensorFlow,Apache MXNet等)中获取模型,并使用它们来提供预测,但是从具有GPU性能的相对适中的EC2实例中进行预测,可以根据需要向上或向下进行拨号。 客户仅为使用的GPU付费。 这样做的目的是将GPU成本限制在所需的水平,而不是通过专用的GPU过度配置EC2实例,而该专用GPU几乎不会被使用。

其他新产品是对Amazon SageMaker的补充, Amazon SageMaker是处理机器学习工作流的AWS管理服务。

许多机器学习模型都需要标记或预先分类的数据。 不幸的是,标记数据是一项通常很耗时的工作,因为它通常必须手动完成。 Amazon SageMaker Ground Truth在人为应用时会实时学习数据集的标签。 一旦对数据的子集进行了训练,就可以使用它来自动应用标签。

亚马逊在SageMaker中解决的另一项机器学习挑战与强化学习系统有关,在该系统中,模型会根据实际反馈不断完善。 Amazon SageMaker RL使开发人员“通过托管的强化学习算法通过强化学习来构建,培训和部署”,捆绑了强化学习堆栈所需的许多常见要素。

Amazon SageMaker Neo的另一项新产品SageMaker Neo优化了机器学习模型,使其运行速度更快且使用的资源更少。 这类似于TensorFlow模型在低端硬件上的部署方式 。 目前,SageMaker Neo仅限于将模型部署到“ Amazon EC2实例,Amazon SageMaker终端节点和由AWS IoT Greengrass管理的设备”。

现在可以在AWS Marketplace中购买用于常见业务任务(需求预测,数据准备,自然语言处理)的预打包机器学习模型 ,并将其部署到Amazon SageMaker。

最后,亚马逊推出了许多新的AI服务,这些服务使开发人员可以为其应用程序添加智能。 Amazon Textract使用机器学习从文档或表单中提取数据。 Amazon Comprehend Medical将自然语言处理应用于医疗文档。 Amazon Personalize是实时的个性化和推荐服务。 Amazon Forecast是一项服务,可根据历史数据生成自定义机器学习模型,以创建时间序列预测。

翻译自: https://www.infoworld.com/article/3325746/aws-piles-on-the-machine-learning-services.html

aws 机器学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值