aws 机器学习
介绍(Introduction)
I have just recently passed my AWS Certified Machine Learning — Speciality exam with over 95%, with about 4 weeks of explicit preparation.
我最近刚通过我的AWS认证机器学习-专业考试,合格率超过95%,经过大约4周的明确准备。
Through this article, I indent to share:
通过这篇文章,我希望分享:
- How much of AWS and Machine Learning did I know before I started preparing for this exam? 在开始准备考试之前,我了解多少AWS和机器学习?
- What approach did I take to prepare for this exam? 我准备了哪种方法来准备考试?
- What resources did I use to prepare? 我准备了哪些资源?
- What tools did I use to assist me? 我用什么工具来协助我?
- Tips on preparing for the exam 准备考试的提示
我的背景(My Background)
To start off with, let me give you my background, both in terms of knowledge on Machine Learning, and Knowledge on AWS. I’m originally a Fluid Mechanics Engineering working at an Oil and Gas team for an Engineering Consultancy in the UK. The reason I chose to take this exam was to validate my understanding in end-to-end machine learning and developing my knowledge on building reliable and effective architecture for machine learning systems on the cloud. I’m a fairly new to the field of Data Science with under 1 year of professional experience as a Data Scientist, even though I have been learning Data Science via online courses (bootcamps), workshops and hackathons for a while (just under 2 years). In terms of AWS, again, I’m pretty new to it too, not to mentioned, I passed the AWS Certified Cloud Practitioner exam just before booking my AWS ML speciality exam. I do not have much professional experience with it, I’ve used it for a few learning projects as part of courses/workshops and tiny freelance projects; but not close to what AWS officially recommends.
首先,让我为您提供有关机器学习和AWS知识的背景知识。 我最初是流体力学工程学,曾在英国的一家石油和天然气团队担任工程顾问。 我选择参加此考试的原因是为了验证我对端到端机器学习的理解,并发展有关在云上为机器学习系统构建可靠而有效的体系结构的知识。 尽管我已经通过在线课程(训练营),讲习班和黑客马拉松学习了一段时间(不到2年),但我还是数据科学领域的新手,拥有不到1年的数据科学家专业经验。 )。 同样,就AWS而言,我也很陌生,更不用说,我在预订AWS ML专业考试之前就通过了AWS Certified Cloud Practitioner考试。 我没有太多的专业经验,作为课程/讲习班和小型自由职业者项目的一部分,我将其用于一些学习项目。 但与AWS的官方建议不符。
首先成为AWS认证的云实践者 (Be an AWS Certified Cloud Practitioner First)
Since, we’re talking about the Cloud Practitioner exam, I would like to mention that preparing and passing the Cloud Practitioner exam before you book your ML exam is certainly strongly recommended for two reasons:
既然,我们谈论的是Cloud Practitioner考试,因此我强烈建议您强烈建议在预订ML考试之前准备和通过Cloud Practitioner考试,这有两个原因:
- Cloud Practitioner exam, gives a good understanding of the cloud concepts and the various AWS Services, including S3, EC2, IAM users, roles and policies, cloud security, scalability, elasticity, fault tolerance, shared responsibility model, well-architected framework, and the other basics, which really helps when preparing for AWS ML Speciality Certification. Cloud Practitioner考试很好地理解了云概念和各种AWS服务,包括S3,EC2,IAM用户,角色和策略,云安全性,可伸缩性,弹性,容错性,共享责任模型,结构合理的框架,以及其他基础知识,在准备AWS ML专业认证时确实有帮助。
- The Cloud Practitioner exam costs $100, the ML Speciality exam costs $300, but if you’ve given the Cloud Practitioner exam, you get a 50% discount on your next AWS exam, which in total, costs you only $250 (for both exams combined) saving you $50, and you get a free practice exam. The practice exam is much shorter though, only containing 20 questions, as compared to 65 in the real exam. Cloud Practitioner考试费用为$ 100,ML专业考试费用为$ 300,但是如果您已参加Cloud Practitioner考试,则可以在下一次AWS考试中获得50%的折扣,而总费用仅为250美元(两种考试的总和)为您节省了50美元,您将获得一次免费的练习考试。 不过,实践考试要短得多,只包含20个问题,而实际考试中只有65个问题。
了解考试内容 (Understanding the Exam Content)
The exam is split in 4 domains: Data Engineering (20%), Exploratory Data Analysis (24%), Modelling (36%) and ML Implementation & Operations (20%). From my experience during preparation and the exam, the content within EDA and Modelling is a good balance of your understanding on the topic itself, as well as AWS specific services, whereas the Data Engineering and MLOps doma