我们将一个一维数组看成是一个完全二叉树。在此基础上我们对堆进行定义:完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列 a[i] 是堆,则堆顶元素(完全二叉树的根)必为序列中 n 个元素的最小值(或最大值)。若堆顶元素为最小值,则该堆称为小顶堆;若堆顶元素为最大值,则该堆称为大顶堆。
要实现堆排序,主要包括两个过程(这里以大顶堆为例):
(1)将一个无序序列建成大顶堆;
(2)在输出堆顶元素(最大元素)后,调整剩余元素成为一个新的大顶堆。
(1)将一个无序序列建成大顶堆
我们首先要在顺序结构的 [low,high] 范围内实现“筛选”算法。设 low 为根结点,其左、右子树均已是大顶堆,将根结点值与左、右子树的根结点较大值进行比较;若较之更大或相等,则已是大顶堆;否则将根结点与大者交换,并继续向下比较,直到已是大顶堆为止。
我们从第 n/2 个元素开始至根结点进行“筛选”,建大顶堆。
(2)在输出堆顶元素(最大元素)后,调整剩余元素成为一个新的大顶堆
将堆顶元素(最大元素)与当前最后一个元素交换,去除当前最后一个元素,从堆顶开始进行“筛选”,建立新的大顶堆,并重复此过程,直到完成排序为止。如下图示例:(原序列为 74 40 60 36 18 50 16 20 12 15)
程序代码:
# include <iostream>
# include <algorithm>
using namespace std;
//进行堆的筛选
void HeapAdjust(int* a, int low, int high);
//堆排序
void HeapSort(int* a, int n);
int main()
{
int n;
int* a;
cout << "请输入元素个数:";
cin >> n;
a = (int*)malloc((n + 1) * sizeof(int));
cout << "请输入各元素:";
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
HeapSort(a, n);
for (int i = 1; i <= n; i++)
{
cout << a[i] << " ";
}
cout << endl;
return 0;
}
//进行堆的筛选
void HeapAdjust(int* a, int low, int high)
{
int i = low;
int t = a[i];
int j = 2 * i;
while (j <= high)
{
if (j + 1 <= high && a[j + 1] > a[j])
{
//在左右子树选大者
j++;
}
if (t >= a[j])
{
//已是大顶堆
break;
}
//大者上移,并继续向下筛选
a[i] = a[j];
i = j;
j = 2 * i;
}
//插入最终位置
a[i] = t;
}
//堆排序
void HeapSort(int* a, int n)
{
int t;
for (int i = n / 2; i > 0; i--)
{
//把a建成大顶堆
HeapAdjust(a, i, n);
}
for (int i = n; i > 1; i--)
{
//将堆顶元素和当前最后一个元素交换
t = a[1];
a[1] = a[i];
a[i] = t;
//重新调整为大顶堆
HeapAdjust(a, 1, i - 1);
}
}
运行结果:
请输入元素个数:10
请输入各元素:54 78 12 45 99 81 49 23 101 7
7 12 23 45 49 54 78 81 99 101
总结:堆排序在元素个数较多的情况下是很有效的。整个排序的过程(主要包括建堆和调整建新堆)的时间复杂度为O(nlogn)。在最坏的情况下,堆排序的时间复杂度也为O(nlogn),这是它最大的优点。
以上便是我这次的学习成果,很高兴与大家分享。