求解a^x (mod n) 的方法

在RSA密码系统中,这类问题是必须要要解决的。下面介绍以快速求幂运用平方乘方法求解此类问题!

这种方法的主要想法就是把指数当作 比特 的二进制数来处理 。例如:

y = 17^22 (mod 21)

这里写图片描述

代码如下:

def mod(a,x,n):
    s = bin(x)[2:]
    c = []
    for i in s:
        c.append(i)
    c.reverse()
    y = 1
    for i in c:
        if(int(i)==1):
            y = (a*y) % n
        a = (a**2) % n
    return y

print(mod(17,22,21))

参考《密码学与网络安全》

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要将 $3^{352}$ 模 $353$ 求出来。根据费马小定理,$3^{352} \equiv 1 \pmod{353}$。因此,$3^{352} = k \times 353 + 1$,其中 $k$ 是某个整数。 现在,我们需要求出 $k$。我们可以使用欧拉定理,即 $a^{\varphi(n)} \equiv 1 \pmod{n}$(其中 $\varphi(n)$ 是欧拉函数),来快速求解。由于 $353$ 是质数,所以 $\varphi(353) = 352$。 因此,$3^{352} \equiv 1 \pmod{353}$ 可以写成 $3^{\varphi(353)} \equiv 1 \pmod{353}$。根据欧拉定理,$3^{352} \equiv 3^{\varphi(353)} \equiv 1 \pmod{353}$。因此,$k = \frac{3^{352}-1}{353}$。 现在,我们可以使用 Pohlig-Hellman 算法来求解方程 $3^x \equiv 135 \pmod{353}$。首先,我们需要分解 $352$ 的质因数,得到 $352 = 2^5 \times 11$。 对于每个质因子 $p_i$,我们需要求解方程 $3^{x_i} \equiv 135^{(352/p_i)} \pmod{353}$。因为 $p_i$ 是质数,所以我们可以使用指数为 $p_i$ 的原根来解决这个方程。 对于 $p_i=2$,我们有 $3^{x_1} \equiv 135^{(352/2)} \equiv 1 \pmod{353}$。因此,$x_1 = 0$。 对于 $p_i=11$,我们有 $3^{x_2} \equiv 135^{(352/11)} \equiv 3^{32} \pmod{353}$。因此,我们需要求解方程 $3^y \equiv 3^{32} \pmod{353}$,其中 $y$ 模 $11$。根据指数为 $11$ 的原根,我们可以列出以下方程: $$ \begin{aligned} 3^{y} &\equiv 3^{32} \pmod{353} \\ 3^{11} &\equiv 17 \pmod{353} \\ 3^{22} &\equiv 17^2 \equiv 218 \pmod{353} \\ 3^{33} &\equiv 3^{22} \times 3^{11} \equiv 218 \times 17 \equiv 74 \pmod{353} \end{aligned} $$ 因此,$y \equiv 33 \pmod{11}$,即 $y = 3$。因此,$x_2 = 11 \times i + 3$,其中 $i$ 是某个整数。 综上所述,$x \equiv x_1 + x_2 \times 2^5 \pmod{352}$。代入 $x_1$ 和 $x_2$ 的值,我们得到 $x \equiv 3 \pmod{352}$。 因此,方程 $3^x \equiv 135 \pmod{353}$ 的解为 $x \equiv 3 \pmod{352}$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值