深度学习
deep mind
CxsGhost
记录自己努力的过程
展开
-
图像处理:Canny边缘检测
Canny边缘检测是一种非常流行的边缘检测算法,是John Canny在1986年提出的。它是一个多阶段的算法,即由多个步骤构成。1.图像降噪2.计算图像梯度3.非极大值抑制4.阈值筛选我们就事后诸葛亮,分析下这个步骤的缘由。首先,图像降噪。我们知道梯度算子可以用于增强图像,本质上是通过增强边缘轮廓来实现的,也就是说是可以检测到边缘的。但是,它们受噪声的影响都很大。那么,我们第一步就是想到要先去除噪声,因为噪声就是灰度变化很大的地方,所以容易被识别为伪边缘。第二步,计算图像梯度,得到可能边缘。转载 2020-07-11 14:58:44 · 576 阅读 · 0 评论 -
Keras损失函数:categorical_crossentropy和sparse_categorical_crossentropy的区别
按照keras之父的书中所写:如果 labels 是 one-hot 编码,用 categorical_crossentropy one-hot 编码: [[0, 1, 0], [1, 0, 0], [0, 0, 1]] 每条每一行是一个label的编码,1所在的位置代表label如果你的 tagets 是 数字编码 ,用 sparse_categorical_crossentropy 数字编码:[2, 0, 1, 5, 19] 每个数字就是label书中写道:这原创 2020-05-13 12:41:44 · 10190 阅读 · 1 评论 -
别再买云服务器了,快来白嫖谷歌的GPU(TPU)!!(使用Google Colab notebook 跑机器学习、深度学习模型)
前提条件:要有梯子用谷歌浏览器谷歌浏览器是登录着你的谷歌账号的点击链接colab:https://colab.research.google.com/notebooks/welcome.ipynb然后直接一切就绪了,谷歌还是很大方的,内存和硬盘空间都很多这里面有些简单的介绍,小段的测试代码啥的。。可以直接跳过这个东西十分类似于jupyter笔记本(实际上就是然后进入你的谷歌云盘:https://drive.google.com/drive/my-drive就可以从这创建colab笔原创 2020-05-12 08:55:20 · 19572 阅读 · 22 评论 -
详解Keras(tf)报错:"BaseCollectiveExecutor::StartAbort Unknown: Failed to get convolution algorithm"
今天用keras内置的VGG16跑模型时遇到了这个报错,在确定不是CUDA等环境版本问题后,矛头指向了是因为显存分配没搞好造成的。(我的电脑只有一块菜卡4G显存)2020-05-08 00:59:24.206906: E tensorflow/stream_executor/cuda/cuda_dnn.cc:329] Could not create cudnn handle: CUDNN_ST...原创 2020-05-08 02:06:34 · 1991 阅读 · 0 评论 -
理解深度神经网络中的Dropout算法,为何能够防止过拟合
主要参考:https://blog.csdn.net/program_developer/article/details/80737724dropout出现至今似乎还没有像L1, L2正则化一样有数学上的严谨理论证明是如何防止过拟合的绝大多数文章也都是从理解分析的角度去解释个人感觉对这个无需过多深究...转载 2020-04-21 17:32:45 · 413 阅读 · 0 评论 -
2020最新安装教程(pycharm):TensorFlow2.1、Keras、CUDA、CUDNN(超详细!!又简单!!!文字少图片多的傻瓜教程)
前言:本文教程是博主结合网上的旧文章以及自己的安装经历所写,安装这三个东西没有任何条件限制,即便你已经安装了Anaconda。我自己的电脑上是早先安装了python解释器,后来又安装了anaconda(此时是有两个解释器),最近又安装的TensorFlow2.1.0,这些只要你自己区分好安装位置,一般都是不会有什么冲突的。1. 下载CUDA、CUDNN:打开NVIDIA控制面板 --&...原创 2020-03-07 19:11:19 · 3828 阅读 · 9 评论 -
深度学习:不调TensorFlow,自己写神经网络学习MNIST数据集(2)—旋转图像继续强化模型(正确率达98%+)
之前手写神经网络学习效果已经很不错了,最高正确率略微超越97%。本文文章中我们对数据做进一步处理,从而继续强化模型的能力。同时我们也将进行反向查询,看看神经网络到底学到了什么之前一篇:——————————————————————————————————————————————————我们知道MNIST数据集是“手写体数字”,那么既然是手写,就难免会有歪歪扭扭的可能,而这样的数据输入到我们的神...原创 2020-03-12 23:33:33 · 866 阅读 · 0 评论 -
深度学习:不调TensorFlow,自己写神经网络学习MNIST数据集(1)—基础版(正确率96%~97%)
嗷嗷原创 2020-03-12 23:34:14 · 870 阅读 · 0 评论