反证法-合并区间

合并区间

力扣官方题解发布于 2 天前11.7k官方C++Python排序

方法一:排序

思路

如果我们按照区间的左端点排序,那么在排完序的列表中,可以合并的区间一定是连续的。如下图所示,标记为蓝色、黄色和绿色的区间分别可以合并成一个大区间,它们在排完序的列表中是连续的:

56-2.png

算法

我们用数组 merged 存储最终的答案。

首先,我们将列表中的区间按照左端点升序排序。然后我们将第一个区间加入 merged 数组中,并按顺序依次考虑之后的每个区间:

  • 如果当前区间的左端点在数组 merged 中最后一个区间的右端点之后,那么它们不会重合,我们可以直接将这个区间加入数组 merged 的末尾;

  • 否则,它们重合,我们需要用当前区间的右端点更新数组 merged 中最后一个区间的右端点,将其置为二者的较大值。

正确性证明

上述算法的正确性可以用反证法来证明:在排完序后的数组中,两个本应合并的区间没能被合并,那么说明存在这样的三元组 (i, j, k)(i,j,k) 以及数组中的三个区间 a[i], a[j], a[k]a[i],a[j],a[k] 满足 i < j < ki<j<k 并且 (a[i], a[k])(a[i],a[k]) 可以合并,但 (a[i], a[j])(a[i],a[j]) 和 (a[j], a[k])(a[j],a[k]) 不能合并。这说明它们满足下面的不等式:

a[i].end < a[j].start \quad (a[i] \text{ 和 } a[j] \text{ 不能合并}) \\ a[j].end < a[k].start \quad (a[j] \text{ 和 } a[k] \text{ 不能合并}) \\ a[i].end \geq a[k].start \quad (a[i] \text{ 和 } a[k] \text{ 可以合并}) \\a[i].end<a[j].start(a[i] 和 a[j] 不能合并)a[j].end<a[k].start(a[j] 和 a[k] 不能合并)a[i].end≥a[k].start(a[i] 和 a[k] 可以合并)

我们联立这些不等式(注意还有一个显然的不等式 a[j].start \leq a[j].enda[j].start≤a[j].end),可以得到:

a[i].end < a[j].start \leq a[j].end < a[k].starta[i].end<a[j].start≤a[j].end<a[k].start

产生了矛盾!这说明假设是不成立的。因此,所有能够合并的区间都必然是连续的。

  • Python3
  • C++
class Solution:
    def merge(self, intervals: List[List[int]]) -> List[List[int]]:
        intervals.sort(key=lambda x: x[0])

        merged = []
        for interval in intervals:
            # 如果列表为空,或者当前区间与上一区间不重合,直接添加
            if not merged or merged[-1][1] < interval[0]:
                merged.append(interval)
            else:
                # 否则的话,我们就可以与上一区间进行合并
                merged[-1][1] = max(merged[-1][1], interval[1])

        return merged

复杂度分析

  • 时间复杂度:O(n\log n)O(nlogn),其中 nn 为区间的数量。除去排序的开销,我们只需要一次线性扫描,所以主要的时间开销是排序的 O(n\log n)O(nlogn)。

  • 空间复杂度:O(\log n)O(logn),其中 nn 为区间的数量。这里计算的是存储答案之外,使用的额外空间。O(\log n)O(logn) 即为排序所需要的空间复杂度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贪心算法是一种常用的算法思想,它通常用于求解最优化问题。贪心算法的基本思想是:每一步都选择当前状态下最优的解,最终得到全局最优解。但是,贪心算法并不是所有问题都适用,有些问题需要进行证明才能确定贪心算法的正确性。 其中,反证法是一种常用的证明方法。反证法的基本思想是:假设所要证明的命题不成立,然后推导出一个矛盾的结论,从而证明原命题成立。 在贪心算法中,反证法通常用于证明贪心选择性质和最优子结构性质。具体来说,假设贪心算法得到的解不是最优解,然后推导出一个矛盾的结论,从而证明贪心算法得到的解是最优解。 举个例子,假设有一个背包问题,要求在背包容量为C的情况下,选择一些物品放入背包中,使得背包中物品的总价值最大。每个物品有两个属性:重量w和价值v。贪心算法可以选择每次选择单位重量价值最大的物品放入背包中。我们可以使用反证法来证明这个贪心算法的正确性: 假设贪心算法得到的解不是最优解,即存在一种更优的解。我们假设这个更优的解选择了物品i和物品j,但是贪心算法没有选择物品j,而是选择了物品k。那么我们可以得到以下两个不等式: v[i]/w[i] > v[j]/w[j] (物品i的单位重量价值大于物品j的单位重量价值) v[i]/w[i] < v[k]/w[k] (物品i的单位重量价值小于物品k的单位重量价值) 将这两个不等式相乘,得到: v[i]*v[k] > v[j]*w[i] 由于v[i]、v[j]、w[i]、w[j]都是正数,所以上式成立。但是,我们知道贪心算法选择物品i和物品k的总价值一定大于选择物品i和物品j的总价值,因为: v[i]*w[k] + v[k]*w[i] > v[i]*w[j] + v[j]*w[i] 这与上式矛盾,因此假设不成立,贪心算法得到的解是最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值