5. 数据结构-堆

一、使用场景

堆在实现上是完全二叉树,堆可以用于构造优先队列,堆可以用于排序,排序算法相对稳定。

二、常见问题

堆常用于解决TOPK问题,并不需要完全排序,例如以下问题:

 

/*
解决思路:
1. 将arr构造成最小堆,然后进行堆排序
2. 取出前K个值便可,不需要完全排序
*/
class Solution {
public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) {
        vector<int> ret;
        for (int i=0; i<k; i++)
        {
            int n = arr.size();
            //最后一个非叶节点为arr[n/2-1], 从该节点开始进行调整
            for(int j=n/2-1; j>=0; j--)
            {
                if(arr[j] > arr[2*j+1])
                {
                    int t = arr[j];
                    arr[j] = arr[2*j+1];
                    arr[2*j+1] = t;
                }
                if(2*j+2 <= n-1 && arr[j] > arr[2*j+2])
                {
                    int t = arr[j];
                    arr[j] = arr[2*j+2];
                    arr[2*j+2] = t;
                }
            }
            //得到最大值;
            ret.push_back(arr[0]);
            arr[0] = arr[n-1];
            arr.pop_back();
        }
        return ret;
    }
};

以上时间复杂度太大,在数据量较大时,无法通过测试,下面使用标准库中内置的优先队列,进行堆排序,获取topK。

class Solution {
public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) 
    {
        vector<int> ans;
        priority_queue<int,vector<int>,greater<int>> q;
        for(auto a:arr)
        {
            q.push(a);
        }
        for(int i=0;i<k;i++)
        {
            int n=q.top();
            ans.push_back(n);
            q.pop();
        }
        return ans;
    } 
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值