卡牌

有m种纸牌点数分别为1~m,每种有无穷多张。
有n个人站成一列,给每个人发一张牌。求满足任意相邻两人牌的点数不为k的分发方案有多少。答案对1e9+7取模。

分类讨论, f i f_i fi表示前i个人的方案数, a i a_i ai表示第i张牌满足点数<k时的方案数, b i b_i bi表示第i张牌满足>=k时的方案数。显然有 f i = a i + b i f_i=a_i+b_i fi=ai+bi
讨论m与k的关系(很关键!),

当m+1>k时,
a i = ( k − 2 ) a i − 1 + ( k − 1 ) b i − 1 a_i=(k-2)a_{i-1}+(k-1)b_{i-1} ai=(k2)ai1+(k1)bi1 (a),
b i = ( m − k + 1 ) ( a i − 1 + b i − 1 ) b_i=(m-k+1)(a_{i-1}+b_{i-1}) bi=(mk+1)(ai1+bi1)(b)。

由 (a) 得, b i − 1 = a i − ( k − 2 ) a i − 1 k − 1 b_{i-1}=\frac{a_i-(k-2)a_{i-1}}{k-1} bi1=k1ai(k2)ai1,即 b i = a i + 1 − ( k − 2 ) a i k − 1 b_{i}=\frac{a_{i+1}-(k-2)a_{i}}{k-1} bi=k1ai+1(k2)ai
将 (b) 与上式联立,
b i = a i + 1 − ( k − 2 ) a i k − 1 = ( m − k + 1 ) ( a i − 1 + b i − 1 ) b_{i}=\frac{a_{i+1}-(k-2)a_{i}}{k-1}=(m-k+1)(a_{i-1}+b_{i-1}) bi=k1ai+1(k2)ai=(mk+1)(ai1+bi1)
b i = a i + 1 − ( k − 2 ) a i k − 1 = ( m − k + 1 ) ( a i − 1 + a i − ( k − 2 ) a i − 1 k − 1 ) b_{i}=\frac{a_{i+1}-(k-2)a_{i}}{k-1}=(m-k+1)(a_{i-1}+\frac{a_i-(k-2)a_{i-1}}{k-1}) bi=k1ai+1(k2)ai=(mk+1)(ai1+k1ai(k2)ai1)
化简得 a i + 1 = ( m − 1 ) a i + ( m − k + 1 ) a i − 1 a_{i+1}=(m-1)a_i+(m-k+1)a_{i-1} ai+1=(m1)ai+(mk+1)ai1
a a a 的递推式已求得。

b i b_i bi a a a 表达的式子代入 f i = a i + b i f_i=a_i+b_i fi=ai+bi f i = a i + 1 + a i k − 1 f_i=\frac{a_{i+1}+a_i}{k-1} fi=k1ai+1+ai

所以用矩阵加速求出 a n + 1 a_{n+1} an+1 a n a_n an,直接代入 f i f_i fi 即可,注意要求k-1的逆元。
矩阵为{{m-1,1}{m-k+1,0}}。

当m+1<=k时,m-k+1是k-m-1。

代码如下 (由于矩阵很小我就懒得写循环做矩阵乘法了哈哈哈):

#include <bits/stdc++.h>

using namespace std;

const int MOD=1e9+7;

long long x[2],ans[2],cf[2][2],tmp[2][2];

void mult_ans()
{
    ans[0]=((x[0]*cf[0][0])%MOD+(x[1]*cf[1][0])%MOD)%MOD;
    ans[1]=((x[0]*cf[0][1])%MOD+(x[1]*cf[1][1])%MOD)%MOD;
    x[0]=ans[0],x[1]=ans[1];
}

void mult_cf()
{
    tmp[0][0]=cf[0][0],tmp[0][1]=cf[0][1],tmp[1][1]=cf[1][1],tmp[1][0]=cf[1][0];
    cf[0][0]=((tmp[0][0]*tmp[0][0])%MOD+(tmp[1][0]*tmp[0][1])%MOD)%MOD;
    cf[0][1]=((tmp[0][0]*tmp[0][1])%MOD+(tmp[0][1]*tmp[1][1])%MOD)%MOD;
    cf[1][0]=((tmp[1][0]*tmp[0][0])%MOD+(tmp[1][1]*tmp[1][0])%MOD)%MOD;
    cf[1][1]=((tmp[1][0]*tmp[0][1])%MOD+(tmp[1][1]*tmp[1][1])%MOD)%MOD;
}

long long ksm(long long a,long long b)
{
    long long ret=1;
    while(b)
    {
        if(b&1)
   	    ret=(ret*a)%MOD;
        a=(a*a)%MOD;
        b>>=1;
    }
    return ret;
}

int main()
{
    long long n,m,k;
    cin>>m>>n>>k;
    cf[0][0]=(m-1),cf[0][1]=1,cf[1][0]=abs(m-k+1),cf[1][1]=0;
    x[0]=(k-1)%MOD*(m-1)%MOD,x[1]=(k-1);
    n--;
    while(n)
    {
        if(n&1)
            mult_ans();
        n/=2;
        mult_cf();
    }
    cout<<(ans[1]+ans[0])%MOD*ksm(k-1,MOD-2)%MOD;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值