各类背包问题模板

01背包问题

一维数组优化

for(int i=1;i<=n;i++)
    for(int c=m;c>=0;c--)
        if(c>=w[i])
            f[c]=max(f[c],f[c-w[i]]+v[i]);

常数优化

for(int i=1;i<=n;i++)
{
    sumw+=w[i];
    bound=max(m-sumw,w[i]);
    for(int c=m;c>=bound;c--)
        if(c>=w[i])
            f[c]=max(f[c],f[c-w[i]]+v[i]);
}

完全背包问题 (每个物品无数件)

for(int i=1;i<=n;i++)
    for(int c=0;c<=m;c++)
        if(c>=w[i])
            f[c]=max(f[c],f[c-w[i]]+v[i]);

多重背包问题 (每件物品最多有**件可用)

for(int i=1;i<=n;i++)
{
    if(w[i]*a[i]>m)
        for(int c=0;c<=m;c++)
            if(c>=w[i])
                f[c]=max(f[c],f[c-w[i]]+v[i]);
    else
    {
         k=1;amount=a[i];
         while(k<amount)
         {
             for(int c=k*w[i];c>=0;c--)
                 if(c>=w[i])
                     f[c]=max(f[c],f[c-w[i]]+k*v[i]);
             amount-=k;
             k<<=1;
         }  
         for(int c=amount*w[i];c>=0;c--)
             f[c]=max(f[c],f[c-w[i]]+amount*v[i]);
    } 
}

泛化物品 (一个定义域为0..v中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v))

long long qpow(int i,int b)
{
    long long ans=1;
    long long base=i,times=1;
    while(times<=b)
    {
        if(times&b)
        {
            ans*=base;
        }
        base*=base;
        times<<=1;
    }
    return ans;
}
int v,n;
long long dp[maxn],t[maxn][maxn];
void init()
{
    v=read();
    n=read();
    memset(dp,10,sizeof dp);
    dp[0]=0;
    for(int k=1;k<=n;k++)
    {
        int a=read();
        int b=read();
        for(int i=1;i<=v;i++)
            t[k][i]=a*qpow(i,b);
    }//预处理所有的情况
}
void DP()
{
    for(int i=1;i<=n;i++)
        for(int j=v;j>=0;--j)
            for(int k=1;k<=j;k++)
                dp[j]=min(dp[j],dp[j-k]+t[i][k]);//01背包
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问题。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问题,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态转移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态转移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问题的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态转移方程和计算数组dp的值,找到问题的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题和完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态转移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题和完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值