一、面对大数据,不再盲目等待
在处理大规模数据集时,使用 Python 的 `apply()` 方法可以帮助我们高效地对 DataFrame 进行复杂操作。
然而,一个常见的困扰是,我们无法实时看到处理进度和预估的剩余时间。这在处理大型数据或复杂运算时尤为重要,因为不知道任务什么时候能完成,让人感到焦虑不安。
幸运的是,Python 提供了一种简洁的解决方案:`progress_apply()`,这个方法来自于 `tqdm` 库,能够在执行过程中显示一个实时的进度条,让我们一目了然地掌握当前操作的进度。
1. 为何需要进度条?
在处理庞大的数据集时,某些操作可能需要花费大量时间。在这种情况下,没有进度指示可能会让我们误以为程序卡住或出错,进而不得不中断操作,重新尝试。引入进度条后,我们可以:
实时监控进度: 直观地了解当前操作的进展,判断是否需要进一步优化处理流程。
估算剩余时间: 合理安排其他任务的时间,提高工作效率。
提升用户体验: 避免长时间的盲等,减少不必要的焦虑和猜测。
2. 如何实现?
要在 Python 中实现这一功能,我们首先需要安装 `tqdm` 库。`tqdm` 是一个快速、扩展性强的进度条工具库。
安装方法:
pip install tqdm
使用 `progress_apply()` 替代 `apply()`:
在你的 Python 脚本或 Jupyter Notebook 中,通过以下几个简单的步骤,即可实现进度条的展示:
step1 导入必要的库:
import pandas as pd
from tqdm import tqdm
tqdm.pandas()
step2 创建一个 DataFrame:
假设你有一个 DataFrame `df`,需要对其某个列应用函数。
step3 使用 `progress_apply()`:
# 假设你的 DataFrame 是 df,你想对某列应用函数 func
df['new_column'] = df['target_column'].progress_apply(func)
这时,你会看到一个优雅的进度条,显示当前的进度和预估的剩余时间。
二、提高效率,优化体验
通过使用 `tqdm` 的 `progress_apply()` 方法,**我们不仅可以优化数据处理流程,还能提升整体的工作效率和用户体验。**Python 的这一特性展示了其在数据处理方面的强大能力,为编程新手和资深开发者提供了极大的便利。
在今后的数据处理工作中,不妨尝试引入这一小技巧,让数据处理变得更加高效和直观。
你是否想探索Python奥秘?
你是否困惑难以系统性****学习Python?
你是否在学习过程中遇到问题却无人可请教?
……
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
