Stable Diffusion【ControlNet】:改善画质细节的tile模型

本文介绍了ControlNet中的Tile模型,一种在图片处理中用于高清修复、细节增强和图片风格转换的重要工具。作者通过步骤展示了如何利用Tile模型进行图片高清修复,并探讨了其在增加细节和局部调整中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是程序员晓晓。

在ControlNet中,有一个模型叫做Tile, 翻译成中文为"瓷砖,瓦片"。在SD Web UI工具中经常翻译为“分块”,它的主要作用是在保持图片整体布局的基础上给照片添加细节。基于这个特性,经常结合各种插件做图片的精细放大处理,用于对图片进行高清修复改善画质。另外它还有一个很重要的功能,就是用来转换图片风格,比如真人漫改,漫改真人、各种艺术字制作等。今天我们重点来看一下使用这个插件进行图片的高清处理以及细节处理。

一. Tile模型介绍

在上图中,tile模型的控制类型是Tile/Blur(分块/模糊)。这是由于在1.1.410版本后,引入了Blur预处理器,该处理器主要用于调整图片的模糊度。

二. 应用场景1:图片的高清修复

我们下面来看一下使用tile模型进行图片的高清修复。这里使用图生图的方式来操作。

【第一步】:图生图图片的上传

下面进行相关参数设置。

  • 采样器:DPM++ 2M Karras

  • 采样迭代步数:30

  • 图片宽高:512*512,我这里原图片宽高是64*64,这里最好调整到512*512,对图片进行等比例放大。

  • 生成数量:2,一次多生成几张,提高抽签概率

  • 重绘强度:设置为0.6,这个参数建议在0.5以上,大家可以多尝试**。**

【第二步】:ControlNet的设置

相关参数设置如下:

  • 控制类型:选择"Tile/Blur"

  • 预处理器:tile_resample

  • 模型:control_xxx_tile

  • 控制权重 : 设置为1

【第三步】提示词的编写

由于使用了图生图,所以我们可以根据画面的内容简单的写一下提示词。

A dog is sitting on the grass。

如果图片比较复杂,可以借助Tagger工具反推出提示词。

【第四步】大模型的选择以及图片的生成

这里我们使用一些通用的写实模型即可。我这里使用的是DreamShaper 8。可以结合自己的图片特点选择对应的大模型。

点击【生成】按钮,最终生成的图片效果如下。

对比一下使用tile模型处理前后的区别。

三. 应用场景2:增加细节

我们直接使用上面生成图片,在文生图中使用tile模型对图片进行处理一下。

我们看一下生成的图片效果,图片增加了更多的细节。

对比一下使用tile模型处理前后的区别。

下面我们添加一些提示词看一下效果。我们在提示词中添加"被五颜六色的鲜花环绕"。

best quality,masterpiece,A dog is sitting on the grass,((surrounded by colorful flowers:1.2)),

再换一下提示词,在提示词中添加"冬天,在雪地里"。

best quality,masterpiece,A dog is sitting in the snow,((winter,It is snowing:1.2)),

三. 应用场景3:修改细节(局部调整)

我们在提示词中添加头发的颜色"红色头发"。

a super beautiful Chinese girl,very delicate features,long hair,delicate skin,big eyes,

white sweater,necklace,((red hair:1.2)),

standing in the street,upper body,

生成的图片效果如下:

从上面生成的图片可以看出,tile模型成功地修改了图片的细节。但是tile模型的实现机制是是对图像进行重绘,并不是局部修改,所以整个图像上还是会有些细微的变化。

关于ControlNet的tile模型,这是一个非常重要的模型之一,有很多的应用场景,各种不同玩法,后续还会继续介绍。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable Diffusion ControlNet 模型介绍 ControlNet 是一种用于增强和控制 Stable Diffusion 图像生成过程的神经网络模型[^1]。通过引入额外的条件输入,ControlNet 可以更精确地指导图像生成的方向,从而提高生成质量并实现更加多样化的创作效果。 #### 主要功能特点 - **灵活性**:可以与现有的任何 Stable Diffusion 模型无缝集成。 - **多模态支持**:不仅限于文本提示词,还可以接受其他形式的数据作为引导信号,比如边缘检测图、语义分割图等。 - **高效性**:尽管增加了新的组件,但在性能上依然保持了较高的效率。 ### 使用方法概述 为了成功部署和运行 ControlNet ,用户需注意几个关键步骤: 1. 确认安装环境已准备好必要的依赖库;如果遇到 `No module named 'mmpose'` 错误,则表明缺少 mmdetection 或 mmcv 库的支持[^2]。 2. 下载官方发布的预训练权重文件以及对应的配置脚本,并将其放置到指定目录下。 3. 对 Web UI 进行适当设置后重启服务端口,此时应当能够在界面上找到新增加的功能选项[^3]。 4. 根据具体应用场景调整参数设定,尝试不同的组合方式探索最佳实践方案。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16).to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("./astronaut_rides_horse.png") ``` 此代码片段展示了如何加载一个基本版本的 Stable Diffusion pipeline 并执行简单的图片生成功能。对于想要利用 ControlNet 扩展能力的情况来说,还需要进一步导入特定模块并修改相应部分以适应新特性需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值