Chinese MNIST数据集(Kaggle)的pytorch实现

本文介绍了如何使用PyTorch处理Kaggle上的Chinese MNIST数据集,包括数据集特点、神经网络结构设计、数据加载方法以及训练过程中的Loss曲线展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Chinese MNIST数据集

          本数据集来自Kaggle网站 Chinese MNIST | Kaggle

主要包括15000张64*64的手写中文数字图片,和一份内容文件。

 二、神经网络结构

         三层全连通网络:4096*300*80*15

三、传播过程

          BP算法的计算过程可参考之前的文章,有详细说明,不再赘述。

四、本项目重点:数据集的载入

           这里主要采用通过文件名获得标签的方法。具体实现过程可参考B站视频教程【绝对干货】pytorch加载自己的数据集,数据集载入-视频合集

五、程序(pytorch)

# 1 加载必要的库
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import torchvision
import os
from PIL import Image
from torch.utils.data import  DataLoader,Dataset
import matplotlib.pyplot as plt
from sklearn import preprocessing

# 2 定义超参数
batch_size = 128 #训练每批处理的数据
num_epochs = 10  #训练数据集的轮次

# 3 下载、加载数据
path_dir = "F:\\JetBrains\\Pycha
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仲夏夜之梦xz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值