人工智能学习

数学基础:

线性代数:scalar, vector, matrix, tensor

概率论:条件独立,条件概率,数据期望,P

导数:极限值,极小点,极大眯,鞍点,梯度下降

深度学习理论:正向传播、反向传播、计算损失,更新参数(模型与训练数据集不断拟合)

数据集:训练集,验证集(8:2分),预测集。

案例:识别验证码【预测结果,可信度(概率)】,车牌端到端识别,手写数字识别

 

规则+数据=》传统编程=》答案

数据+答案(带结果标注的数据)=》机器学习=》规则

机器学习的对象:

带标签训练数据=》训练集【80%】+训练-》规则/模型=》验证集(20%)=》无标签的测试数据/预测集=》答案

 

机器学习分类:按任务类型分类=》回归问题+分类问题+聚类问题+降维问题

按学习方式分类:有监督学习【分类+回归】+无监督学习【聚类+降维】+强化学习【评价学习,再励学习,动物和人类,条件反射】【奖励:增加发生概率,惩罚:减少发生概率】

机器学习方法三要素:机器学习方法=模型(业务建模,数学表达)+策略(损失函数,拟合)+算法(求解,梯度下降法,牛顿法推导)

模型评估:准确率、精度,召回率(recall,查全率)

 

 

回归模型

分类模型:朴素贝叶斯、决策树

聚类模型:高斯混合聚类

降维模型:奇异值分解

深度学习:词向量模型Word2Vec, Doc2Vec, 深度神经网络模型。

 

单层神经网络:Input layer=》output Layer

多层神经网络:Input layer=》Hidden Layer=》output Layer

循环神经网络:Input layer=》Hidden Layer=》Hidden Layer=》output Layer

带反馈

====================

计算机自主从数据中归纳出模式和规则。

传统程序:人类识别现象,分析和设计出规则,然后处理新数据。

智能程序:智能框架从数据中分析学习,然后归纳出规则和模型,然后处理新数据。

智能框架建立模型的方式:分类、回归,聚集、降维,评价和反馈(强化学习)。

 

产品经理发现现象,然后改进,不断提高指标。

后面是数据越来越多,不断观察数据,然后分析和设计规则,发现这方面不如让一个AI程序来处理,自己总结规律,从数据中学习出来的规则,比产品经理设计出来的规则更好。

优点:面对新规则时,大量规则的维护时,24小时不知累,

 

计算机自身根据人类输入的数据等信息制订规则,而非由人类对其施予的规则。

在机器学习中,计算机以人类给予的不太完善的规则和和数据为基础,对其不断进行完善和调整,我们将这一过程称为学习。

监督学习:事先给予计算机正确敏据,然后使其自动学习规则和模式的方法。

学习阶段,预测(predict)阶段。

 

监督学,分类

无监督学习,分割

强化学习,学习行动模式,条件反射,操作性学习。

强化学习:

马尔可夫决策过程(Markov Decision Processes,MDPs)MDPs 简单说就是一个智能体(Agent)采取行动(Action)从而改变自己的状态(State)获得奖励(Reward)与环境(Environment)发生交互的循环过程。MDP 的策略完全取决于当前状态(Only present matters),这也是它马尔可夫性质的体现。

强化学习

 

卷积神经网络中每层卷积层(Convolutional layer)由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法最佳化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

 

深度学习,多阶段验证,多层。

我们将隐藏层为两层及以上的神经网络的学习称为深度学习。多层神经网络,循环神经网络。

最低数据量,让计算机学习由人类制作少量优质数据,并利于其模型制作大量的监督数据。

 

机器学习:向系统提供数据(训练数据或学习数据)并通过数据自动确定系统的参数(变量值)

该不该缓存,远程调用,中断,这些都要根据多种条件作出决策,多项数据,全部记录入,然后学习决策是否远程调用。

 

TensorFlow=Tensor(张量)+Flow(层之间的流动,数据流图)

人工智能=》机器学习=》深度学习,神经网络的新称谓深度学习。

numpy,MNIST 数据集,Keras

====================

动手学人工智能:

斯坦福大学吴恩达机器学习公开课:欢迎参加《机器学习》课程

https://haokan.baidu.com/v?vid=4881698990612435335&pd=bjh&fr=bjhauthor&type=video

 

 

机器学习导论(ML Zero to Hero, part 1)

https://www.youtube.com/watch?v=KNAWp2S3w94&list=RDCMUC0rqucBdTuFTjJiefW5t-IQ&index=1

 

 

TensorFlow 教程

https://www.tensorflow.org/tutorials/

https://www.tensorflow.org/tutorials/quickstart/advanced

端到端的开源机器学习平台,

TensorFlow 是一个端到端平台,无论您是专家还是初学者,它都可以让您轻松地构建和部署机器学习模型。

 

TensorFlow与Github

https://github.com/tensorflow

https://www.tensorflow.org/js

 

基本分类:对服装图像进行分类

https://www.tensorflow.org/tutorials/keras/classification?hl=zh_cn

https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/keras/classification.ipynb

 

 

飞桨

https://www.paddlepaddle.org.cn/

飞桨(PaddlePaddle)是集深度学习核心框架、工具组件和服务平台为一体的技术先进、功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态。提供丰富的官方支持模型集合,并推出全类型的高性能部署和集成方案供开发者使用。

 

 

 

=============

什么是机器学习:

在特定狭窄的领域,在数据中学习规则。

传统程序是:输入数据+规则=输出答案

人工智能是:输入大量训练+答案/结果(有标注,无标注,评价反馈改进【条件反射】,输入和答案/结果有强弱关联)=规则模型

 

推荐算法:分类-》搜索-》推荐,导航将越来越少,让信息到人。

推荐系统是AI非常的切入点。

 

产品=》理论=》框架代码=》应用场景=》工作和招聘+GPU,5个方面都了解,算是阶段性告一段落。

 

https://keras.io/zh/initializers/

 

 

 

 

================

《深度学习推荐系统》,王喆

男士看到的天猫,女士看到的天猫,应该是不一样的。

 

 

度量和评估(评估指标)过后,才有改进

知识图谱和知识架构

四项能力,岗位对能力的要求。

目录:为什么,之前,当下,介绍,评估,知识图谱,发展历史时间线,技能需要。

作者是学霸,写作表述能力,图形化能力很强。

 

====================

《AI超级入门》

《简明的TensorFlow2》

《深度学习与TensorFlow 实战》

《深度学习推荐系统》

《PyTorch边做边学深度强化学习》

《深度学习实战之PaddlePaddle》

《机器学习基础,从入门到求职》

 

 

工作职责
1、负责核心推荐、搜索引擎的系统设计与架构演进,结合业务场景需求进行设计优化和问题发掘,并针对性进行架构设计,不断提升系统的稳定性、效率,支持策略和业务的高度迭代,提升系统效果;
2、结合产品业务、策略迭代、深度模型演进的等多方面的需求,对数据流处理、离线数据生成、在线检索推荐等系统中进行架构优化以及新模块的设计落地工作,提升业务策略的承载与迭代效率;
3、挖掘系统瓶颈,通过代码与设计优化、多机房服务部署等工作,提升系统的稳定性、处理速度以及优化资源等工作。
职位要求
1、精通Java语言编程,熟悉linux开发环境,具备扎实的数据结构和算法功底以及优秀的编码能力,5年以上的服务端工作经验;
2、具备服务端大型分布式系统研发经验,对解决具有挑战性问题充满激情,快速定位分析系统异常和解决问题的能力;
3、较强的责任心、良好的沟通能力和团队合作精神。
具备以下一项或多项加分:
a.大型互联网公司主持或参与过搜索、推荐、广告投放系统的核心系统研发工作
b.大型分布式系统的演进、异常定位与发现、资源优化等有相关经验
c.机器学习,数据挖掘,深度学习方面具备经验,对算法应用、特征工程或训练平台等方面的实践

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值