数学基础:
线性代数:scalar, vector, matrix, tensor
概率论:条件独立,条件概率,数据期望,P
导数:极限值,极小点,极大眯,鞍点,梯度下降
深度学习理论:正向传播、反向传播、计算损失,更新参数(模型与训练数据集不断拟合)
数据集:训练集,验证集(8:2分),预测集。
案例:识别验证码【预测结果,可信度(概率)】,车牌端到端识别,手写数字识别
规则+数据=》传统编程=》答案
数据+答案(带结果标注的数据)=》机器学习=》规则
机器学习的对象:
带标签训练数据=》训练集【80%】+训练-》规则/模型=》验证集(20%)=》无标签的测试数据/预测集=》答案
机器学习分类:按任务类型分类=》回归问题+分类问题+聚类问题+降维问题
按学习方式分类:有监督学习【分类+回归】+无监督学习【聚类+降维】+强化学习【评价学习,再励学习,动物和人类,条件反射】【奖励:增加发生概率,惩罚:减少发生概率】
机器学习方法三要素:机器学习方法=模型(业务建模,数学表达)+策略(损失函数,拟合)+算法(求解,梯度下降法,牛顿法推导)
模型评估:准确率、精度,召回率(recall,查全率)
回归模型
分类模型:朴素贝叶斯、决策树
聚类模型:高斯混合聚类
降维模型:奇异值分解
深度学习:词向量模型Word2Vec, Doc2Vec, 深度神经网络模型。
单层神经网络:Input layer=》output Layer
多层神经网络:Input layer=》Hidden Layer=》output Layer
循环神经网络:Input layer=》Hidden Layer=》Hidden Layer=》output Layer
带反馈
====================
计算机自主从数据中归纳出模式和规则。
传统程序:人类识别现象,分析和设计出规则,然后处理新数据。
智能程序:智能框架从数据中分析学习,然后归纳出规则和模型,然后处理新数据。
智能框架建立模型的方式:分类、回归,聚集、降维,评价和反馈(强化学习)。
产品经理发现现象,然后改进,不断提高指标。
后面是数据越来越多,不断观察数据,然后分析和设计规则,发现这方面不如让一个AI程序来处理,自己总结规律,从数据中学习出来的规则,比产品经理设计出来的规则更好。
优点:面对新规则时,大量规则的维护时,24小时不知累,
计算机自身根据人类输入的数据等信息制订规则,而非由人类对其施予的规则。
在机器学习中,计算机以人类给予的不太完善的规则和和数据为基础,对其不断进行完善和调整,我们将这一过程称为学习。
监督学习:事先给予计算机正确敏据,然后使其自动学习规则和模式的方法。
学习阶段,预测(predict)阶段。
监督学,分类
无监督学习,分割
强化学习,学习行动模式,条件反射,操作性学习。
强化学习:
马尔可夫决策过程(Markov Decision Processes,MDPs)MDPs 简单说就是一个智能体(Agent)采取行动(Action)从而改变自己的状态(State)获得奖励(Reward)与环境(Environment)发生交互的循环过程。MDP 的策略完全取决于当前状态(Only present matters),这也是它马尔可夫性质的体现。
卷积神经网络中每层卷积层(Convolutional layer)由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法最佳化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。
深度学习,多阶段验证,多层。
我们将隐藏层为两层及以上的神经网络的学习称为深度学习。多层神经网络,循环神经网络。
最低数据量,让计算机学习由人类制作少量优质数据,并利于其模型制作大量的监督数据。
机器学习:向系统提供数据(训练数据或学习数据)并通过数据自动确定系统的参数(变量值)
该不该缓存,远程调用,中断,这些都要根据多种条件作出决策,多项数据,全部记录入,然后学习决策是否远程调用。
TensorFlow=Tensor(张量)+Flow(层之间的流动,数据流图)
人工智能=》机器学习=》深度学习,神经网络的新称谓深度学习。
numpy,MNIST 数据集,Keras
====================
动手学人工智能:
斯坦福大学吴恩达机器学习公开课:欢迎参加《机器学习》课程
https://haokan.baidu.com/v?vid=4881698990612435335&pd=bjh&fr=bjhauthor&type=video
机器学习导论(ML Zero to Hero, part 1)
https://www.youtube.com/watch?v=KNAWp2S3w94&list=RDCMUC0rqucBdTuFTjJiefW5t-IQ&index=1
TensorFlow 教程
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/quickstart/advanced
端到端的开源机器学习平台,
TensorFlow 是一个端到端平台,无论您是专家还是初学者,它都可以让您轻松地构建和部署机器学习模型。
TensorFlow与Github
基本分类:对服装图像进行分类
https://www.tensorflow.org/tutorials/keras/classification?hl=zh_cn
https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/keras/classification.ipynb
飞桨
https://www.paddlepaddle.org.cn/
飞桨(PaddlePaddle)是集深度学习核心框架、工具组件和服务平台为一体的技术先进、功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态。提供丰富的官方支持模型集合,并推出全类型的高性能部署和集成方案供开发者使用。
=============
什么是机器学习:
在特定狭窄的领域,在数据中学习规则。
传统程序是:输入数据+规则=输出答案
人工智能是:输入大量训练+答案/结果(有标注,无标注,评价反馈改进【条件反射】,输入和答案/结果有强弱关联)=规则模型
推荐算法:分类-》搜索-》推荐,导航将越来越少,让信息到人。
推荐系统是AI非常的切入点。
产品=》理论=》框架代码=》应用场景=》工作和招聘+GPU,5个方面都了解,算是阶段性告一段落。
https://keras.io/zh/initializers/
================
《深度学习推荐系统》,王喆
男士看到的天猫,女士看到的天猫,应该是不一样的。
度量和评估(评估指标)过后,才有改进
知识图谱和知识架构
四项能力,岗位对能力的要求。
目录:为什么,之前,当下,介绍,评估,知识图谱,发展历史时间线,技能需要。
作者是学霸,写作表述能力,图形化能力很强。
====================
《AI超级入门》
《简明的TensorFlow2》
《深度学习与TensorFlow 实战》
《深度学习推荐系统》
《PyTorch边做边学深度强化学习》
《深度学习实战之PaddlePaddle》
《机器学习基础,从入门到求职》
工作职责
1、负责核心推荐、搜索引擎的系统设计与架构演进,结合业务场景需求进行设计优化和问题发掘,并针对性进行架构设计,不断提升系统的稳定性、效率,支持策略和业务的高度迭代,提升系统效果;
2、结合产品业务、策略迭代、深度模型演进的等多方面的需求,对数据流处理、离线数据生成、在线检索推荐等系统中进行架构优化以及新模块的设计落地工作,提升业务策略的承载与迭代效率;
3、挖掘系统瓶颈,通过代码与设计优化、多机房服务部署等工作,提升系统的稳定性、处理速度以及优化资源等工作。
职位要求
1、精通Java语言编程,熟悉linux开发环境,具备扎实的数据结构和算法功底以及优秀的编码能力,5年以上的服务端工作经验;
2、具备服务端大型分布式系统研发经验,对解决具有挑战性问题充满激情,快速定位分析系统异常和解决问题的能力;
3、较强的责任心、良好的沟通能力和团队合作精神。
具备以下一项或多项加分:
a.大型互联网公司主持或参与过搜索、推荐、广告投放系统的核心系统研发工作
b.大型分布式系统的演进、异常定位与发现、资源优化等有相关经验
c.机器学习,数据挖掘,深度学习方面具备经验,对算法应用、特征工程或训练平台等方面的实践