机器学习实战之Logistic回归

一、基本概念

Logistic,一种解决回归问题的经典算法,属于优化算法的一种,主要使用梯度上升或下降的方法进行问题求解,从而得到最佳拟合直线。假设现在有一些数据点,我们用一条直线对这些点进行拟合,这个拟合过程就称做回归。利用Logistic进行分类的主要思想为:根据现有数据对分类界线建立回归公式,以此进行分类。

显然得到Logistic拟合直线(曲线)并不是我们的终极目的,因为我们的目标是进行分类预测,这也是为什么我们明明解决的是分类问题却要用到回归二字的缘由,得到回归直线只是其中的一个步骤,当我们得到回归直线后,可以考虑将其带入一个函数,根据函数结果判断属于0 or 1类,此类函数有海维塞得阶跃函数(Heaviside step function),但此函数从0到1的跳跃是瞬间的,跳跃过程难以处理,因此我们选择了另外一种常见的分类函数——Sigmoid,f(x)=1/1+exp(-x),此函数具有优良性质,因为其值域为[0,1],且x=0时函数值为0.5,将回归直线带入该函数,结果大于0.5则被分类为正例,否则为负例,其实也是一种概率推断,即以0.5为界限判断属于哪一类的概率更大。

二、基于最优化方法的最佳回归系数确定

不难看出,Logistic回归的核心问题是回归系数的确定,这里就要用到高数里的梯度法了,通俗来说就是每次都沿着梯度下降or上升最快的方向进行迭代,这样算法就可以在最短时间内收敛,从而得到最佳回归系数,由于本文以实战为主,复杂的数学原理可以查阅相关资料得到一个直观的理解。而梯度下降有分为两种,批量梯度下降BGD(Batch gradient descent)和随机梯度下降SGD(Stochastic gradient descent),主要区别在于BGD每次迭代要用到所有训练数据,当数据量较小时该方法非常奏效,但数据量非常大时,训练速度将会急速下降,计算复杂度极高,因此产生了SGD,即每次只用一个样本点进行迭代,便可加快收敛速度,但带来的缺点也是显而易见的,即结果不如BGD精确,但我们可以对其进行改进提高准确度。

三、代码实例

以上就是Logistic的基本原理,没有完全明白也问题不大,通过实例代码可以更好的理解算法思想,掌握其精髓,书看百遍不如自己动手实现一遍,一起动手实现一个Logistics小例子吧~~

首先定义程序整体框架,然后逐一实现其子函数模块。当然前提时导入numpy和matplotlib库。

loadDataSet函数用来对数据做预处理,返回的是数据数组dataArr和类别矩阵labelMat。

gradAscent函数是核心模块,用来梯度算法计算出权重值weights。

plotBestFit函数用坐标系来刻画数据点以及分类后的结果,传入参数weights即可画出图形。

from numpy import *
import matplotlib.pyplot as plt
def main():
    dataArr,labelMat = loadDataSet()
    weights = gradAscent(dataArr,labelMat)
    plotBestFit(weights)

loadDataSet模块

def loadDataSet():
    dataMat = []
    labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))

    return dataMat,labelMat

gradAscent模块

#批量梯度上升
def gradAscent(dataMatIn,classLabels):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycle = 500
    weights = ones((n,1))
    for k in range(maxCycle):
        h = sigmoid(dataMatrix*weights)
        error = (labelMat-h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

plotBestFit模块

def plotBestFit(wei):
    weights = wei.getA()  #矩阵转化为数组
    dataMat,labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []
    ycord1 = []

    xcord2 = []
    ycord2 = []

    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    x = arange(-3.0,3.0,1.0) #返回一个array对象,从-3.0到3.0,步长为1.0
    y = (-weights[0]-weights[1] * x) / weights[2]
    ax.plot(x,y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

以上就是批量梯度上升的全部代码,实际分类效果如何呢?刻画出分类结果如下:


可以看到分类结果比较令人满意,只有4个样本点分类错误。

那么使用随机梯度上升算法分类效果如何呢?这里我们定义stocGradAscent函数表示随机梯度上升算法

#随机梯度上升
def stocGradAscent(dataMatrix,classlabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i] * weights))
        error = classlabels[i] - h
        weights = weights + alpha *error *dataMatrix[i]
    return weights

再次得到分类结果为:


可以看到本次分类效果明显没有批量梯度算法好,那么是否有改进的随机梯度算法呢?答案是肯定的。判断优化算法优劣的可靠方法是看它是否收敛,即参数是否达到了稳定值,是否还会不断地变化,因此随机梯度的主要问题是周期性的波动,导致数据分类效果较差,因此我们通过改进两处来修正该算法,首先是alpha的值,其在每次迭代时都会调整,并且不会减小到0,其次使用随机样本来更新回归系数,从而减少周期性波动。另外,该算法也提供了第三个默认参数,若不设置,则默认迭代150次。代码如下

#改进的随机梯度上升
def stocGradAscent1(dataMatrix,classLabels,numIter = 150):
    m,n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4/(1.0+j+i) + 0.1
            randIndex = int(random.uniform(0,len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del (dataIndex[randIndex])
    return weights

效果如下


可见改进后的随机梯度算法准确率明显提升。

四、总结

本文首先介绍了Logistic回归的基本概念,其次概况介绍了最优化问题中的梯度算法原理,最后通过实例代码和可视化方法展示了Logistic回归算法,通过原理+实战,达到了学以致用的目的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值