第一部分数学基础知识
第2章 命题
2.1 定义和举例
2.2 命题联结词
2.3重言式和矛盾式.
2.4 命题形式化
2.5命题的量化
第3章 集合和集合运算
3.1 集合
3.2 集合相等
3.3 补集
3.4空集
3.5 子集和超集
3.6幂集和集合族
3.7集合的交集、并集和补集
3.8笛卡儿积
3.9集合运算的其他基本规律
第4章数学证明
第5章 关系
5.1 定义和举例
5.2关系运算
5.3 关系的重要性质
5.4 等价关系与划分
5.5等价关系的运算
5.6偏序关系
第6章 映射与函数
6.2定义及第一个例子
6.3满射、单射和双射
6.4集合的基数
第二部分技术支持
第7章 数学证明方法.
7.1直接证明法
7.2 换质位法证明
7.3反证法
7.4等价证明
7.5原子命题证明
7.6个案分析证明
7.7带量词的命题证明
7.8组合证明
第8章 完全归纳法.
8.1 完全归纳法的思路
8.2归纳证明举例
8.3归纳证明的结构
8.4广义完全归纳法
8.5归纳定义
第9章 组合计数
9.1基本计数原则
9.2排列和二项式系数
9.3计算二项式系数
10章离散概率论
10.1随机试验和概率
10.2条件概率
10.3 随机变量.
10.4 二项分布和几何分布
第三部分 数学结构
第11 章 布尔代数
11.1 布尔函数及其表达形式
11.2 布尔代数的定义
11.3布尔代数示例
11.4 布尔代数的性质
11.5布尔代数中的偏序
11.6布尔代数的原子
11.7 布尔表达式的规范形式
11.8 最小化布尔表达式
11.9同构基本定理
11.10 电路代数
第12章 图和树
12.1 基本概念
12.2 图中的通路和回路
12.3 图和矩阵
12.4 图同构
12.5 树
13章 命题逻辑
13.1 布尔代数和命题逻辑
13.2 范式
13.3 可满足性等价公式
13.4 不可满足的子句集合
13.5 霍恩子句的可满足性
13.6 归结原理
13.7 2KNF中的子句集
14 章 模算术
14.1 因数关系
14.2 模的加法和乘法
14.3 模运算
14.4最大公因数和欧几里得算法
14.5 费马小定理
14.6使用费马小定理的加密
14.7 RSA 加密算法