【LeetCode】省份数量(并查集)

166 篇文章 1 订阅
78 篇文章 46 订阅

547. 省份数量 - 力扣(LeetCode)

一、题目

有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。

省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。

给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。

返回矩阵中 省份 的数量。

示例 1:
 

输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2

示例 2:

输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3

提示:

  • 1 <= n <= 200
  • n == isConnected.length
  • n == isConnected[i].length
  • isConnected[i][j] 为 1 或 0
  • isConnected[i][i] == 1
  • isConnected[i][j] == isConnected[j][i]

二、代码

class Solution {
    public int findCircleNum(int[][] isConnected) {
        // 判空
        if (isConnected == null) {
            return 0;
        }

        // 获取二维数组有多少行,也就是有多少个城市
        int n = isConnected.length;
        // 创建并查集,并查集大小为n
        UnionFind unionFind = new UnionFind(n);
        // 遍历二维数组的上半部分,因为城市a和城市b联通,那么b一定也和a联通,所以只需要遍历二维数组的一半就够了,二维数组是关于对角线对称的
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                // 如果i和j两个城市联通,则使用并查集将他们两个合并到一个集合中
                if (isConnected[i][j] == 1) {
                    unionFind.union(i, j);
                }
            }
        }
        // 返回并查集当下的集合数
        return unionFind.count();
    }

    // 并查集
    public static class UnionFind {
        // 记录每个结点的父节点,经过路径压缩之后,就变成了记录每个集合的代表节点  parents[i] = k  表示i的代表节点是k,如果parents[i] = parents[j],就说明i和j在同一个集合中
        private int[] parents;
        // 记录每一个集合中有多少个元素。 size[i] = k : 只有当i是代表节点时,size[i]才有意义,否则无意义
        private int[] size;
        // 栈,用来做路径压缩
        private int[] stack;
        // 记录当前并查集中有多少个集合
        private int cnt;

        // 初始化并查集
        public UnionFind(int n) {
            parents = new int[n];
            size = new int[n];
            stack = new int[n];
            // 最开始将每一个点都看作是独立的集合,有n个点则并查集集合数就有n个
            cnt = n;

            // 最开始将每一个点都看作是一个独立的集合,在后续并查集合并操作的过程中再将他们进行合并
            // {0} {1} {2} {N-1}
            for (int i = 0; i < n; i++) {
                // 每个人的父节点就是自己
                parents[i] = i;
                // 每个集合的元素数为1
                size[i] = 1;
            }
        }

        // 找到i的代表节点,并进行路径压缩
        public int find(int i) {
            int index = 0;
            // 先将途径的所有节点加入到栈中
            stack[index++] = i;
            // 沿着父节点路径进行遍历,直到遍历到最末尾,也就是节点的父节点等于其本身时
            while (parents[i] != i) {
                i = parents[i];
                // 这个过程中将路过的所有节点都加入到栈中
                stack[index++] = i;
            }
            // 上述循环结束后,i即为最后找到的代表节点

            // 进行路径压缩,将经过的所有节点的父节点直接设置为他们的代表节点
            while(index > 0) {
                parents[stack[--index]] = i;
            }

            // 返回代表节点
            return i;
        }

        // 进行合并
        public void union(int i, int j) {
            // 找到两个点的代表节点
            int iparent = find(i);
            int jparent = find(j);

            // 得到两个点所在集合的元素数
            int isize = size[iparent];
            int jsize = size[jparent];

            // 如果两个点的代表节点不同,则说明连个点现在不在同一个集合中,所以需要对他们进行合并操作
            if (iparent != jparent) {
                // 将小集合挂在大集合上,这样也能有效地减少父节点路径长度,提高效率
                if (isize > jsize) {
                    parents[jparent] = iparent;
                    // 更新集合的元素个数
                    size[iparent] += size[jparent];
                } else {
                    parents[iparent] = jparent;
                    size[jparent] += size[iparent];
                }
                // 合并之后就将并查集中集合的数量减1
                cnt--;
            }
        }

        // 返回并查集中集合的数量
        public int count() {
            return cnt;
        }
    }
}

三、解题思路 

这种求连通性的题目,一般都是用并查集取求解。就是创建并查集,然后对两个节点进行合并操作,有相同代表节点的点则说明是相互连通的,所以最后并查集中在同一个集合中的点都是相互连通的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值