一、题目
一条包含字母 A-Z 的消息通过以下的方式进行了 编码 :
'A' -> "1"
'B' -> "2"
...
'Z' -> "26"
要 解码 一条已编码的消息,所有的数字都必须分组,然后按原来的编码方案反向映射回字母(可能存在多种方式)。例如,"11106" 可以映射为:
"AAJF" 对应分组 (1 1 10 6)
"KJF" 对应分组 (11 10 6)
注意,像 (1 11 06) 这样的分组是无效的,因为 "06" 不可以映射为 'F' ,因为 "6" 与 "06" 不同。
除了 上面描述的数字字母映射方案,编码消息中可能包含 '*' 字符,可以表示从 '1' 到 '9' 的任一数字(不包括 '0')。例如,编码字符串 "1*" 可以表示 "11"、"12"、"13"、"14"、"15"、"16"、"17"、"18" 或 "19" 中的任意一条消息。对 "1*" 进行解码,相当于解码该字符串可以表示的任何编码消息。
给你一个字符串 s ,由数字和 '*' 字符组成,返回 解码 该字符串的方法 数目 。
由于答案数目可能非常大,返回 109 + 7 的 模 。
示例 1:
输入:s = "*"
输出:9
解释:这一条编码消息可以表示 "1"、"2"、"3"、"4"、"5"、"6"、"7"、"8" 或 "9" 中的任意一条。
可以分别解码成字符串 "A"、"B"、"C"、"D"、"E"、"F"、"G"、"H" 和 "I" 。
因此,"*" 总共有 9 种解码方法。
示例 2:
输入:s = "1*"
输出:18
解释:这一条编码消息可以表示 "11"、"12"、"13"、"14"、"15"、"16"、"17"、"18" 或 "19" 中的任意一条。
每种消息都可以由 2 种方法解码(例如,"11" 可以解码成 "AA" 或 "K")。
因此,"1*" 共有 9 * 2 = 18 种解码方法。
示例 3:
输入:s = "2*"
输出:15
解释:这一条编码消息可以表示 "21"、"22"、"23"、"24"、"25"、"26"、"27"、"28" 或 "29" 中的任意一条。
"21"、"22"、"23"、"24"、"25" 和 "26" 由 2 种解码方法,但 "27"、"28" 和 "29" 仅有 1 种解码方法。
因此,"2*" 共有 (6 * 2) + (3 * 1) = 12 + 3 = 15 种解码方法。
提示:
1 <= s.length <= 105
s[i]
是0 - 9
中的一位数字或字符'*'
二、代码
class Solution {
public static long MOD = 1000000007;
public int numDecodings(String str) {
if (str == null || str.length() == 0) {
return 0;
}
long[] dp = new long[str.length()];
return (int) process2(str.toCharArray(), 0, dp);
}
public long process2(char[] s, int i, long[] dp) {
if (i == s.length) {
return 1;
}
if (s[i] == '0') {
return 0;
}
if (dp[i] != 0) {
return dp[i];
}
// 当前位置的字符不是*
if (s[i] != '*') {
// 情况1:当前位置的数字单独转换
long p1 = 1 * process2(s, i + 1, dp);
if (i + 1 == s.length) {
dp[i] = p1 % MOD;
return dp[i];
}
// 情况2:当前位置的数字和下一个位置的数字合并在一起进行转换
long p2 = 0;
// 下一个位置是*
if (s[i + 1] != '*') {
int num = (s[i] - '0') * 10 + (s[i + 1] - '0');
if (num < 27) {
p2 = 1 * process2(s, i + 2, dp);
}
// 下一个位置不是*
} else {
if (s[i] < '3') {
p2 = (s[i] == '1' ? 9 : 6) * process2(s, i + 2, dp);
}
}
dp[i] = (p1 + p2) % MOD;
return dp[i];
// 当前位置的字符是*
} else {
// 情况1:当前位置的数字单独转换
// i 单转 9种
long p1 = 9 * process2(s, i + 1, dp);
if (i + 1 == s.length) {
dp[i] = p1 % MOD;
return dp[i];
}
// 情况2:当前位置的数字和下一个位置的数字合并在一起进行转换
long p2 = 0;
if (s[i + 1] != '*') {
// * 0 10 20
// * 1 11 21
// * 2 12 22
// * 3 13 23
// * 6 16 26
// * 7 17
// * 8 18
// * 9 19
p2 = (s[i + 1] < '7' ? 2 : 1) * process2(s, i + 2, dp);
} else {
// **
// 11~19 9
// 21 ~26 6
// 15
p2 = 15 * process2(s, i + 2, dp);
}
dp[i] = (p1 + p2) % MOD;
return dp[i];
}
}
}
三、解题思路
*:可以变1~9。注意*不能变为0,只能变为1~9。
这是一个从左往右尝试的模型,也就是从给定字符串的左边开始分情况讨论,将所有的情况都列出来。