一、题目
给定整数 n
,返回 所有小于非负整数 n
的质数的数量 。
示例 1:
输入:n = 10 输出:4 解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0 输出:0
示例 3:
输入:n = 1 输出:0
提示:
0 <= n <= 5 * 106
二、代码
class Solution {
public int countPrimes(int n) {
// 如果n小于3,那么一定最多只会判断0和1,因为题意要求了是要判断1~n-1的素数个数,而0和1都不是素数,所以直接返回0
if (n < 3) {
return 0;
}
// 标记一个数是否为素数,例:j已经不是素数了,那么prime[j] = true;也就是筛选流程结束后,prime数组中所有为false的数就是素数
// 这个数组中下标只有为奇数的时候是有效的,合数的话就认为除了2以外其他的合数都是非素数
boolean[] prime = new boolean[n];
// 所有偶数都不要,还剩几个数。这里是为了统计素数个数,通过剔除非素数来统计的
// 这是因为我们只有在彻底完成素数筛选后,preme数组为false的才是素数,但是如果素数筛选过程中被标为true的数,它就一定不是素数,我们可以利用这个来做素数的统计,这样就能在筛选结束后少写一个循环来统计素数个数
int count = n / 2;
/**
埃氏筛选法(埃拉托斯特尼筛法)算法描述:
先把素数2的倍数全部删除,剩下的数第一个素数为3,再把素数3的倍数全部删除,剩下的第一个素数为5,再把素数5的倍数全部删除······
直到把n以内最后一个素数的倍数删除完毕,就得到n以内的所有素数
*/
// 跳过了1、2和所有的合,i+=2保证了只关心奇数
// 只判断奇数3、5、7....等是否为素数,因为合数除了2以外都是非素数(因为他们肯定都会有2这个因子),所以可以不同去判断合数了
for (int i = 3; i * i < n; i += 2) {
// 如果这个数在之前的流程中已经确定了不是素数(也就是说已经确定了i存在除了1和本身以外的因子),就不用判断这个数了,直接跳过
// 我们要找每一轮剩下的数中第一个素数
if (prime[i]) {
continue;
}
// 此时确定了i是一个素数,那么我们就把i的所有倍数都标记为非素数,因为i的倍数肯定存在i这个因子,所以一定不是素数
// 下面的操作不是判断合数,因为合数一定都是非素数,所以循环就从i*i开始,然后每一次都加2*i,这样就能保证找的都是素数i的非合数倍数
// 然后将这些数都标记为非素数即可
// 3 -> 3 * 3 = 9 3 * 5 = 15 3 * 7 = 21
// 7 -> 7 * 7 = 49 7 * 9 = 63
// 13 -> 13 * 13 13 * 15
//
for (int j = i * i; j < n; j += 2 * i) {
// 如果j这个数还没有被标记为非素数,那么我们就去进行标记操作
// 如果j这个数已经标记为非素数了,那么我们就不再重复统计了
if (!prime[j]) {
// 将素数个数减1,因为剔掉了j这个数
--count;
// 将j标记为true,表示非素数
prime[j] = true;
}
}
}
// 返回1~n-1范围上素数个数
return count;
}
}
三、解题思路
素数就是除了1和自己以外没有别的因子,规定1不是素数,0也不是素数。求1~n-1中有几个素数,题意要求判断的时候不判断n。
这道题的解题代码我们用的就是埃氏素数筛选法 + 倍增技巧。
埃氏筛选法(埃拉托斯特尼筛法)算法描述:
先把素数2的倍数全部删除,剩下的数第一个素数为3,再把素数3的倍数全部删除,剩下的第一个素数为5,再把素数5的倍数全部删除······直到把n以内最后一个素数的倍数删除完毕,就得到n以内的所有素数。