复杂软件网络度量与分度(科研论文)
文章平均质量分 92
本专辑深入探讨了各类先进的复杂度量算法,并广泛应用于科研论文的研究中,旨在为学术研究贡献力量。(如果有需要或者合作,请表明您的意图并私信联系我。期待与您的交流与合作!)
向阳而生__
每一天,都是向阳而生的开始
展开
-
识别社会网络中的影响节点(VoteRank*算法)
VoteRank*算法是一种用于社交网络中识别有影响力节点的算法。它通过引入自投票机制和考虑节点的多样性来改进现有算法。算法根据节点的H-index值计算每个节点的投票能力,并确定节点对自身和邻居的投票比例。通过计算节点的投票得分,算法选择有影响力的节点,并抑制选定节点及其邻居的投票能力。该算法在选择有影响力节点时考虑了自投票和多样性的因素,相比现有方法具有优势。通过实验评估,VoteRank*算法在多个网络中展现了出色的传播性能。原创 2023-10-04 15:07:45 · 568 阅读 · 1 评论 -
网络节点的h指数及其与度和相关度的关系(H-Index算法)
本篇文章总结了H-指数在网络中衡量节点重要性的应用,将其与度、H-指数和核心度指标进行了关联。研究构建了一个名为H的运算符,该运算符可以在一组实数上运作,并将节点的H-指数定义为最大值h,其中存在至少h个度不低于h的邻居。研究结果表明,H-指数在度和核心度指标之间达到了一个较好的权衡,可以很好地衡量节点的影响力,在许多真实网络上表现出非常好的性能。甚至在异步更新过程下,核心度的收敛性也可以得到保证,这使得分布式计算算法可以处理大规模动态网络。原创 2023-10-03 21:18:46 · 968 阅读 · 0 评论