将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
代码:
#include <stdio.h>
int n,sum=0,h=-1,count=0,s[10];
void ti(int x)
{
int i;
if(sum==n)
{
count++;
printf("%d=",n);
for(i=0;i<h;i++)
printf("%d+",s[i]);
printf("%d%c",s[i],(count%4==0||h==0)?'\n':';');
}
else if(sum>n)
return;
for(i=x;i<=n;i++)
{
s[++h]=i;
sum=sum+i;
ti(i);
sum=sum-i;
h--;
}
}
int main()
{
scanf("%d",&n);
ti(1);
return 0;
}