import cv2
import mediapipe as mp
import numpy as np
import time
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
# 加载图片
image = cv2.imread('wlzc.jpg') #
image_height, image_width, _ = image.shape
# 初始化面部网格模型
with mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=1,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
# 将图像转换为RGB格式
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 处理图像
results = face_mesh.process(image_rgb)
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
# 定义眼睛区域的关键点索引
left_eye_indices = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
right_eye_indices = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
# 提取眼睛关键点坐标
left_eye_landmarks = np.array([[int(landmark.x * image_width), int(landmark.y * image_height)]
for idx, landmark in enumerate(face_landmarks.landmark) if idx in left_eye_indices])
right_eye_landmarks = np.array([[int(landmark.x * image_width), int(landmark.y * image_height)]
for idx, landmark in enumerate(face_landmarks.landmark) if idx in right_eye_indices])
# 模拟眨眼逻辑(简单示例,可根据需要优化)
blink_interval = 3 # 眨眼间隔时间(秒)
blink_duration = 0.5 # 眨眼持续时间(秒)
last_blink_time = time.time()
is_blinking = False
blink_start_time = 0
while True:
current_time = time.time()
# 绘制眼睛关键点
for eye_landmarks in [left_eye_landmarks, right_eye_landmarks]:
cv2.polylines(image, [eye_landmarks], isClosed=True, color=(0, 255, 0), thickness=2)
# 模拟眨眼
if current_time - last_blink_time > blink_interval and not is_blinking:
is_blinking = True
blink_start_time = current_time
elif is_blinking and current_time - blink_start_time > blink_duration:
is_blinking = False
last_blink_time = current_time
if is_blinking:
# 这里简单地清空眼睛区域来模拟眨眼效果
for eye_landmarks in [left_eye_landmarks, right_eye_landmarks]:
cv2.fillPoly(image, [eye_landmarks], (0, 0, 0))
cv2.imshow('Blinking Eyes', image)
if cv2.waitKey(1) & 0xFF == 27: # 按下Esc键退出
break
cv2.destroyAllWindows()
---
import cv2
import mediapipe as mp
import numpy as np
import time
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
# 加载图片
image = cv2.imread('wlzc.jpg') # 请将 'your_image.jpg' 替换为实际的图片路径
image_height, image_width, _ = image.shape
mediapipe
MediaPipe 是一个由 Google 开发的开源跨平台框架,可用于构建多模式应用程序中的机器学习管道。它提供了一系列的工具和预训练模型,能够帮助开发者快速实现诸如人脸检测、手部追踪、姿势估计等计算机视觉任务。以下从多个方面为你详细介绍