python
文章平均质量分 82
佳佳(5.11)
清醒自律知进退
展开
-
机器学习中的数据预处理(sklearn preprocessing)
文章来源:https://blog.csdn.net/csmqq/article/details/51461696?utm_source=blogxgwz4Standardization即标准化,尽量将数据转化为均值为零,方差为一的数据,形如标准正态分布(高斯分布)。实际中我们会忽略数据的分布情况,仅仅是通过改变均值来集中数据,然后将非连续特征除以他们的标准差。sklearn中 scale函数...转载 2018-10-29 10:54:20 · 465 阅读 · 0 评论 -
python中的fit_transform()函数和transform()函数
敲《Python机器学习及实践》上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下:涉及到这两个函数的代码如下:# 从sklearn.preprocessing导入StandardScalerfrom sklearn.preprocessing import StandardScaler...转载 2018-10-29 10:50:42 · 37659 阅读 · 5 评论 -
python语言_np.loadtxt()
np.loadtxt()用于从文本加载数据。文本文件中的每一行必须含有相同的数据。loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)fname要读取的文件、文件名、...原创 2018-10-29 10:34:32 · 6065 阅读 · 0 评论 -
【python笔记】使用matplotlib,pylab进行python绘图
一提到python绘图,matplotlib是不得不提的python最著名的绘图库,它里面包含了类似matlab的一整套绘图的API。因此,作为想要学习python绘图的童鞋们就得在自己的python环境中安装matplotlib库了,安装方式这里就不多讲,方法有很多。 本文将在已安装matplotlib的环境中教新手如何快速使用其中的接口进行绘图操作,并展现一个非常直观的绘图例子,以及控...原创 2018-10-29 10:21:00 · 3790 阅读 · 0 评论 -
影像组学pyradiomics教程----影像组学特征
First OrderFeatures (19 features)Shape Features(16 features)Gray LevelCo-occurrence Matrix (GLCM) Features (23 features)Gray Level SizeZone Matrix (GLSZM) Features (16 features)Gray Level RunLength Ma...转载 2018-07-16 14:43:50 · 9043 阅读 · 0 评论 -
影像组学利器--pyradiomics简介
pyradiomics是一个开源的python包,用于医学图像的影像组学特征提取。官方网址:https://pyradiomics.readthedocs.io/en/latest/index.html鉴于之前的教程有些模糊,不太易于操作,现在更新为更加通俗易懂的步骤1. 确保计算机已经安装python,并且版本在2.7或者3.4以上2. 在https://github.com/Radiomics...转载 2018-07-16 14:37:43 · 20914 阅读 · 2 评论 -
关于python 中的__future__模块(from __future__ import ***)
在开头加上from __future__ import print_function这句之后,即使在python2.X,使用print就得像python3.X那样加括号使用。python2.X中print不需要括号,而在python3.X中则需要。# python2.7print "Hello world"# python3print("Hello world" 如果某个版本中出现了某...原创 2018-06-27 09:52:07 · 1251 阅读 · 0 评论 -
python学习(总结一)
本文是学习python过程一点笔记,自己记忆力不好,所以选择记下来,方便平时看。也分享出来给有需要的伙伴吧!分享让生活更美好,分享让编程更快乐!原创 2017-07-20 20:35:08 · 390 阅读 · 0 评论