目录
题目描述
所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母。来看一个简单的例子:
43#9865#045
+ 8468#6633
44445509678
其中#号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是5和3,第二行的数字是5。
现在,我们对问题做两个限制:
首先,我们只考虑加法的虫食算。这里的加法是N进制加法,算式中三个数都有N位,允许有前导的0。
其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的字母表示。如果这个算式是N进制的,我们就取英文字母表午的前N个大写字母来表示这个算式中的0到N-1这N个不同的数字:但是这N个字母并不一定顺序地代表0到N-1)。输入数据保证N个字母分别至少出现一次。
BADC
+ CBDA
DCCC
上面的算式是一个4进制的算式。很显然,我们只要让ABCD分别代表0123,便可以让这个式子成立了。你的任务是,对于给定的N进制加法算式,求出N个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解
输入输出
输入
4行。第一行有一个正整数N(N<=26),后面的3行每行有一个由大写字母组成的字符串,分别代表两个加数以及和。这3个字符串左右两端都没有空格,从高位到低位,并且恰好有N位。
输出
一行。在这一行中,应当包含唯一的那组解。解是这样表示的:输出N个数字,分别表示A,B,C……所代表的数字,相邻的两个数字用一个空格隔开,不能有多余的空格。
题意
在进制加法中知道哪些数相同 求加法中的每个数
思路
+ 从各位开始按照字母出现的顺序枚举每个字母代表的值
+ 剪枝
Q:什么是剪枝条件/怎么剪枝
A: 1.搜索时每个数值只能由一个字母代表
2.搜索中如果发现有矛盾就回溯
具体一点
1.因为是加法,所以到了第三行(和的位置),上面两个已经确定,可以直接判断
2.往后预估考虑进位
对于已经填好2个的 可以推出另外一个的2种可能情况 如果都被占据,直接返回否
对于3个都填好了的也可以这样判断
处理难点
难点1:n进制加法
我们一般使用的的都是十进制,不过n进制也挺简单
把十进制的满十进一改为满n进一,总的来说就是把所有十换成n即可
难点2:怎么剪枝
通过分析,可以得出:
1.如果后面没进位的话那么会有:(前一个加数的第k位 + 第二个加数的第k位) mod n = 和的第k位
eg.在十进制中 123+123 的第三位 (3+3)%10=6 or 198+191 的第二位 (9+9)%10=8
2.但如果后面的进位了也会有:(前一个加数的第k位 + 第二个加数的第k位 + 1) mod n = 和的第k位
eg.在十进制中 666+666 的第二位(6+6+1)%10=3 //加法最多进一位嘛
3.所以我们只需判断如果有一位k,加数(加数1的第k位 + 加数二的第k位) mod n 与加数(加数1的第k位 + 加数二的第k位 + 1) mod n 都不等于和的第k位,那么这样的情况是不合法的,只需剪掉这样的情况
思路汇总
简单理一下,现将字符转化成数字保存下来,再用一个数组存储,以方便深搜,与处理好后开始深搜,
按照字母个数深搜,在中间加一个剪枝,减去不合适的,让后枚举字符,判断是否出现过,如果没出现过便向下搜,直到搜到合法答案
ac代码
#include <bits/stdc++.h>
using namespace std;
int a[27], n, b[27];
char x[27], y[27], z[27];
bool bol[27];//判断是否合法
int i, cnt = 0;
bool check()//辅助剪枝
{
int jw = 0;//判断进位
for (int i = n - 1; i >= 0; i--) {
if (a[x[i]] == -1 || a[y[i]] == -1 || a[z[i]] == -1)
jw = -1;
else {
if (jw == -1) {
if ((a[x[i]] + a[y[i]]) % n == a[z[i]])
jw = (a[x[i]] + a[y[i]]) / n;
else if ((a[x[i]] + a[y[i]] + 1) % n == a[z[i]])
jw = (a[x[i]] + a[y[i]] + 1) / n;
else
return 0;
} else if ((a[x[i]] + a[y[i]] + jw) % n == a[z[i]])
jw = (a[x[i]] + a[y[i]] + jw) / n;
else
return 0;
}
}
if (jw != 1)
return 1;
return 0;
}
void dfs(int i)//主函数
{
if (i > n) {
for (int i = 0; i < n - 1; i++)
cout << a[i] << " ";
cout << a[n - 1];
return;
}
for (int j = 0; j < n; j++) {
a[b[i]] = j;
if (!bol[j] && check()) {
bol[j] = 1;
dfs(i + 1);
bol[j] = 0;
}
}
a[b[i]] = -1;
}
int main()
{
memset(a, -1, sizeof a);//记得初始化
cin >> n >> x >> y >> z;
for (int i = 0; i < n; i++) {
x[i] -= 'A';
y[i] -= 'A';
z[i] -= 'A';
}
for (i = 0; i < n; i++) {
if (!bol[x[i]] != 0) {
b[++cnt] = x[i];
bol[x[i]] = 1;
}
if (!bol[y[i]] != 0) {
b[++cnt] = y[i];
bol[y[i]] = 1;
}
if (!bol[z[i]] != 0) {
b[++cnt] = z[i];
bol[z[i]] = 1;
}
}
memset(bol, 0, sizeof bol);//同样初始化
dfs(1);
}