「NOIP2004」虫食算 DFS+剪枝

文章描述了一个关于N进制加法的问题,其中部分数字被替换为字母。算法需找出字母代表的数字,使得加法算式成立。难点包括理解n进制加法和实现剪枝策略,解决方案是通过深度优先搜索(DFS)结合剪枝条件找到唯一解。
摘要由CSDN通过智能技术生成

目录

题目描述

输入输出

输入

输出

题意

思路

处理难点

难点1:n进制加法

难点2:怎么剪枝

思路汇总

ac代码


题目描述

所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母。来看一个简单的例子:

       43#9865#045
    +    8468#6633
       44445509678

    其中#号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是5和3,第二行的数字是5。

    现在,我们对问题做两个限制:

    首先,我们只考虑加法的虫食算。这里的加法是N进制加法,算式中三个数都有N位,允许有前导的0。

    其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的字母表示。如果这个算式是N进制的,我们就取英文字母表午的前N个大写字母来表示这个算式中的0到N-1这N个不同的数字:但是这N个字母并不一定顺序地代表0到N-1)。输入数据保证N个字母分别至少出现一次。



              BADC
       +      CBDA
              DCCC

    上面的算式是一个4进制的算式。很显然,我们只要让ABCD分别代表0123,便可以让这个式子成立了。你的任务是,对于给定的N进制加法算式,求出N个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解

输入输出

输入

4行。第一行有一个正整数N(N<=26),后面的3行每行有一个由大写字母组成的字符串,分别代表两个加数以及和。这3个字符串左右两端都没有空格,从高位到低位,并且恰好有N位。

输出

一行。在这一行中,应当包含唯一的那组解。解是这样表示的:输出N个数字,分别表示A,B,C……所代表的数字,相邻的两个数字用一个空格隔开,不能有多余的空格。

题意


在进制加法中知道哪些数相同 求加法中的每个数

思路


+ 从各位开始按照字母出现的顺序枚举每个字母代表的值

+ 剪枝

Q:什么是剪枝条件/怎么剪枝

A: 1.搜索时每个数值只能由一个字母代表

   2.搜索中如果发现有矛盾就回溯

具体一点

1.因为是加法,所以到了第三行(和的位置),上面两个已经确定,可以直接判断

2.往后预估考虑进位
    对于已经填好2个的 可以推出另外一个的2种可能情况 如果都被占据,直接返回否
    对于3个都填好了的也可以这样判断

处理难点

难点1:n进制加法

我们一般使用的的都是十进制,不过n进制也挺简单
把十进制的满十进一改为满n进一,总的来说就是把所有十换成n即可

难点2:怎么剪枝

通过分析,可以得出:

1.如果后面没进位的话那么会有:(前一个加数的第k位 + 第二个加数的第k位) mod n = 和的第k位
  eg.在十进制中 123+123 的第三位 (3+3)%10=6 or 198+191 的第二位 (9+9)%10=8

2.但如果后面的进位了也会有:(前一个加数的第k位 + 第二个加数的第k位 + 1) mod n = 和的第k位
  eg.在十进制中 666+666 的第二位(6+6+1)%10=3  //加法最多进一位嘛

3.所以我们只需判断如果有一位k,加数(加数1的第k位 + 加数二的第k位) mod n 与加数(加数1的第k位 + 加数二的第k位 + 1) mod n 都不等于和的第k位,那么这样的情况是不合法的,只需剪掉这样的情况

思路汇总

简单理一下,现将字符转化成数字保存下来,再用一个数组存储,以方便深搜,与处理好后开始深搜,
按照字母个数深搜,在中间加一个剪枝,减去不合适的,让后枚举字符,判断是否出现过,如果没出现过便向下搜,直到搜到合法答案

ac代码

#include <bits/stdc++.h>
using namespace std;
int a[27], n, b[27];
char x[27], y[27], z[27];
bool bol[27];//判断是否合法
int i, cnt = 0;

bool check()//辅助剪枝
{
    int jw = 0;//判断进位
    for (int i = n - 1; i >= 0; i--) {
        if (a[x[i]] == -1 || a[y[i]] == -1 || a[z[i]] == -1)
            jw = -1;
        else {
            if (jw == -1) {
                if ((a[x[i]] + a[y[i]]) % n == a[z[i]])
                    jw = (a[x[i]] + a[y[i]]) / n;
                else if ((a[x[i]] + a[y[i]] + 1) % n == a[z[i]])
                    jw = (a[x[i]] + a[y[i]] + 1) / n;
                else
                    return 0;
            } else if ((a[x[i]] + a[y[i]] + jw) % n == a[z[i]])
                jw = (a[x[i]] + a[y[i]] + jw) / n;
            else
                return 0;
        }
    }
    if (jw != 1)
        return 1;
    return 0;
}
void dfs(int i)//主函数
{
    if (i > n) {
        for (int i = 0; i < n - 1; i++)
            cout << a[i] << " ";
        cout << a[n - 1];
        return;
    }
    for (int j = 0; j < n; j++) {
        a[b[i]] = j;
        if (!bol[j] && check()) {
            bol[j] = 1;
            dfs(i + 1);
            bol[j] = 0;
        }
    }
    a[b[i]] = -1;
}
int main()
{
    memset(a, -1, sizeof a);//记得初始化
    cin >> n >> x >> y >> z;
    for (int i = 0; i < n; i++) {
        x[i] -= 'A';
        y[i] -= 'A';
        z[i] -= 'A';
    }
    for (i = 0; i < n; i++) {
        if (!bol[x[i]] != 0) {
            b[++cnt] = x[i];
            bol[x[i]] = 1;
        }
        if (!bol[y[i]] != 0) {
            b[++cnt] = y[i];
            bol[y[i]] = 1;
        }
        if (!bol[z[i]] != 0) {
            b[++cnt] = z[i];
            bol[z[i]] = 1;
        }
    }
    memset(bol, 0, sizeof bol);//同样初始化
    dfs(1);
}


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值