在求a的b次方的时候,如果我们用循环来求则需要循环b次。
如果b很大,我们则需要花费很多时间。
但是如果我们采取快速幂的方法则可以让这个时间大大的减小。
#include<iostream>
using namespace std;
int main()
{
long long a = 2, b = 30,sum=1;
while (b)//当b为0结束循环。
{
if (b % 2 == 0)//当b为偶数时,我们让a变为a的平方,这样b就能除2,大大的减少了循环的次数。
{
a *= a;
b /= 2;
}
else//当b为奇数时,我们让sum=sum*a,这样b就减少了1变为了偶数
{
sum *= a;
b--;
}
}
cout << sum;
}
输出结果:
由于数大小的限制上面的b取值并不大,但是如果求值模一个数,则b可以取到很大。
如果需要求a的b次方取模时我们则需要用到(ab)%p=(a%pb%p)%p这个公式。