快速幂

在求a的b次方的时候,如果我们用循环来求则需要循环b次。
如果b很大,我们则需要花费很多时间。
但是如果我们采取快速幂的方法则可以让这个时间大大的减小。

#include<iostream>
using namespace std;
int main()
{
	long long a = 2, b = 30,sum=1;
	while (b)//当b为0结束循环。
	{
		if (b % 2 == 0)//当b为偶数时,我们让a变为a的平方,这样b就能除2,大大的减少了循环的次数。
		{
			a *= a;
			b /= 2;
		}
		else//当b为奇数时,我们让sum=sum*a,这样b就减少了1变为了偶数
		{
			sum *= a;
			b--;
		}
	}
	cout << sum;
}

输出结果:
在这里插入图片描述
由于数大小的限制上面的b取值并不大,但是如果求值模一个数,则b可以取到很大。
如果需要求a的b次方取模时我们则需要用到(ab)%p=(a%pb%p)%p这个公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值