说明
由于业务中需要用到向量之间的相似索引,其实向量相思索引在很多的业务场景中都有非常高的应用价值。我们已经有把词、句子、图片、等信息处理成响亮的方法。这样在一些相关性检索方面就有了应用价值。
本文中搭建了annoy和nmslib两种方式。
下面提供了两种方式的的索引构建方式:
annoy索引构建:
f = 200
tc_index = AnnoyIndex(f,metric='angular')
with open(r"D:\sent_vec", "r", encoding="utf-8") as reader:
for line in reader:
line = line.strip()
linespl = line.split()
id = int(linespl[0])
vec = [float(v) for v in linespl[1:]]
tc_index.add_item(id, vec)
tc_index.build(5)
tc_index.save(r'D:\index.ann')
nmslib索引构建:
tc_index = nms.init(method='hnsw', space='cosinesimil')
with open(r"D:\sent_vec", "r", encoding="utf-8") as reader:
for line in reader:
line = line.strip()
linespl = line.split()
id = int(linespl[0])
if id % 10000 == 0:
print("processing {}".format(id))
vec = [float(v) for v in linespl[1:]]
if first_data == None:
first_data = vec
tc_index.addDataPoint(id, vec)
简评:
总体使用过程中,nmslib要稍微快一点,根据向量去检索索引,对未登录也比较友好 。