利用FFT成功实现拓扑识别(九)--对FFT算法的理解2

34 篇文章 2 订阅
10 篇文章 1 订阅

复变函数

复数

复习一下,初高中课本中,我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位,即-1开根,就是平方为-1的数,即:

在这里插入图片描述

当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。用坐标表示就是:

在这里插入图片描述回想一下,从小学到初高中,我们用直角坐标系表示过不少的东西,例如:

                       y = x2

在这里插入图片描述能看出来两者背后的本质区别吗?复数的图中,在二维平面上的每一个点,对应的是一个复数,也可以说,所有的复数组成了一个二维的复平面。

而第二张y=x2的图,实际上表达的是一个一维函数的对应关系,即函数映射,如果放到1维坐标上,应该是下面这张图:

在这里插入图片描述
离0越远,对数轴的拉伸越厉害,而对于一维函数关系采用二维平面来输出,主要还是为了直观,易于理解。

复变函数

对于复变函数,自变量已经是一个平面了,如何表现出复变函数的因果关系昵?这就需要三维坐标关系了:

例如:
在这里插入图片描述
或者:

在这里插入图片描述是不是有点颠覆认知的震撼。

复变指数函数

我们知道了复变函数,下面看一个特殊的函数:他就是:

在这里插入图片描述
当角度为π时,就是:

在这里插入图片描述

当我们将任意复数z与这个数相乘时,结果就是z旋转了θ(或π)弧度!(很重要,很重要,很重要,重要的事情说三遍),下面就是我们的终极c位明显出场了,那就是欧拉公式。

欧拉公式

  • 前面我们知道了任意复数z与

在这里插入图片描述
这个数相乘时,结果就是z旋转了π弧度,这意味着什么?是不是和实数域的取反有异曲同工之妙?

更通用一点:设角度为x:

在这里插入图片描述
是不是很神奇,令人不得不佩服数学家的脑袋真不是盖的,他就是莱昂哈德·欧拉,18世纪最伟大的数学家之一,也是人类历史上最杰出的数学家之一

在这里插入图片描述
这个公式以一种极其简单的方式将数学上不同的分支联系起来,其中涵盖了数学中最重要的几个常数,这个公式堪称是最美的数学公式。可是它有什么作用呢,继续往下看。

复指数函数

        复指数函数的定义是:

在这里插入图片描述
第一个为连续复指数函数,第二个是离散复指数函数,用欧拉定理展开,分别为:

在这里插入图片描述

其中j是虚数单位,w一般当做常量,t为变量,给出一张复指数函数好实指数函数对比图:

在这里插入图片描述

看出来没有?复指数函数是周期性的。周期是2πi,因为cos和sin的周期都是2π,有一次颠覆了你的认知?

至此,关于傅里叶变换的前置预备知识就具备了,您理解了吗?

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cyjbj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值