关于构造广义线性回归模型的glmfit函数

MATLAB中有glmfit()函数用于构建一个广义的线性回归模型,glmfit()函数属于统计工具箱。

如何去使用glmfit()?参考help hlmfit中的discription

b = glmfit(X,y,distr)
b = glmfit(X,y,distr,param1,val1,param2,val2,...)
[b,dev] = glmfit(...)
[b,dev,stats] = glmfit(...)

Description

b = glmfit(X,y,distr) returns a (p + 1)-by-1 vector b of coefficient estimates for a generalized linear regression of the responses in y on the predictors in X, using the distribution distrX is an n-by-p matrix of p predictors at each of nobservations. distr can be any of the following: 'binomial''gamma''inverse gaussian''normal' (the default), and'poisson'.

In most cases, y is an n-by-1 vector of observed responses. For the binomial distribution, y can be a binary vector indicating success or failure at each observation, or a two column matrix with the first column indicating the number of successes for each observation and the second column indicating the number of trials for each observation.

This syntax uses the canonical link (see below) to relate the distribution to the predictors.

翻译得:

b = glmfit(X,y,distr)使用分布distr,返回系数估计的(p + 1)-1矢量b,用于y中对X的预测变量的响应的广义线性回归。 
X是n个观测值中的每一个的p个预测值的n×p矩阵。 
distr可以是以下任何一种:'二项式','gamma','逆高斯','正常'(默认值)和'泊松'。


在大多数情况下,y是观察到的响应的n乘1矢量。
对于二项分布,y可以是指示每次观察成功或失败的二元矢量,或者是两列矩阵,其中第一列指示每个观察的成功次数,第二列指示每次观察的试验次数。
 

### 广义线性回归模型 (GLR) 的原理 广义线性回归是一种扩展的线性回归模型,能够处理非正态分布的响应变量。该模型通过引入链接函数和指定一个分布族来描述响应变量与预测变量之间的关系[^2]。 #### 链接函数的作用 在广义线性回归中,链接函数用于建立线性预测器(即自变量的线性组合)与期望值之间的映射关系。这种映射使得即使因变量不是正态分布的情况下也能应用线性方法进行拟合。例如,在泊松回归中使用的自然对数作为链接函数可以很好地适应计数数据的特点;而在逻辑回归里采用logit函数则适用于二元分类问题[^3]。 #### 分布族的选择 为了更灵活地应对不同类型的数据特征,广义线性回归允许选择不同的概率分布家族来定义随机误差项的概率密度形式。常用的有高斯分布(对应于标准线性回归),伯努利分布(适合二分法目标), 泊松分布以及伽玛分布等。每种分布都假设了特定类型的方差结构,并且影响着估计参数的方法及其解释方式[^4]。 ```python from pyspark.ml.regression import GeneralizedLinearRegression glr = GeneralizedLinearRegression(family="gaussian", link="identity", maxIter=10, regParam=0.3) model = glr.fit(trainingData) # Make predictions. predictions = model.transform(testData) ``` 此代码片段展示了如何利用 PySpark 中 `GeneralizedLinearRegression` 类创建并训练一个基于高斯分布族的身份链接函数下的广义线性回归模型实例[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值