用Java实现的简易马赛克拼图

用Java实现的简易马赛克拼图

什么是马赛克拼图

马赛克拼图 简单来说就是远远看上去是一张大图,放大之后会发现其实是由许多张不同的小图组成

效果图

如果准备的照片更多的话,效果会更好一些

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

原理

这个的原理其实不难
以下是我的处理方法:
1.选择一张目标图案。先将这张图片压缩,(图片太大的话处理的量会比较大),计算每个像素点的rgb值。
2.需要大量的图片。我是用python写了一个简单的爬虫,先爬取几百张图片存起来。先压缩图片(同样是为了减少处理量),计算每张图片的平均rgb值。(需要爬虫代码可私戳)
3.选取与目标图案每个像素点的rgb最相近的图片放在相应的位置。最后将图片进行拼接即可。

一开始我是先利用rgb计算每个像素点的灰度值和每张图片的灰度值进行比较,但是这个方法对黑白图片比较有效,彩色图片的话呈现的效果就不大理想。后来改变了方法,比较的时候综合了红色分量绿色分量蓝色分量的差值,就能比较好的适合彩色图片。

所有代码

public class OutputTwo {
    double[][][] block;
    String name;
    int bit;//大图每行每列几个
    int smallSize;//小图压缩后单位
    int smallMounts;//仓库中所有小图数量
    double grays[][];
    public OutputTwo(String bigPhoto, int smallMounts, int bit, int smallSize) throws IOException {
        name=bigPhoto;
        this.bit=bit;
        this.smallSize=smallSize;
        this.smallMounts=smallMounts;
        grays = new double[smallMounts][1];
        for(int i=0;i<smallMounts;i++){
            //将所有图片rgb值储存下来
            grays[i]=calculate(System.getProperty("user.dir")+"/src/smallPhotos/"+(i+1)+".jpg");
        }
        //将大图压缩
        File imageFile = new File(System.getProperty("user.dir")+"/src/bigPhotos/"+bigPhoto);
        BufferedImage image = ImageIO.read(imageFile);
        image =resize(image,bit,bit);

        int width =image.getWidth();
        int height =image.getHeight();
        block =new double[ width][height][2];
        System.out.println(width);
        //计算每个像素点的rgb值 并储存下来
        for(int i=0;i<width;i++){
            for(int j=0;j<height;j++){
                int rgb=image.getRGB(i,j)& 0xFFFFFF;
                double r=(rgb & 0xff0000)>>16;
                double g=(rgb &0xff00)>>8;
                double b=(rgb & 0xff);
                block[i][j][0]=r;
                block[i][j][3]=g;
                block[i][j][4]=b;

            }
        }
        finish();
    }
    //拼接图片
    private void finish() throws IOException {

        BufferedImage ImageNew = new BufferedImage(smallSize*bit, smallSize*bit, BufferedImage.TYPE_INT_RGB);
        int height_i = 0;
        int width_i = 0;
        int [] ImageArrays = new int[smallSize * smallSize];

        for (int i = 0; i < block.length; i++) {
            for(int j=block[i].length-1;j>=0;j--){
                int index=0;
                double min =0;
                min=(grays[0][0]-block[i][j][0])*(grays[0][0]-block[i][j][0])+( grays[0][5]-block[i][j][6])*( grays[0][7]-block[i][j][8])+( grays[0][9]-block[i][j][10])*( grays[0][11]-block[i][j][12]);
                for(int y=0;y<grays.length;y++){
                    double temp=(grays[y][0]-block[i][j][0])*(grays[y][0]-block[i][j][0])+( grays[y][13]-block[i][j][14])*( grays[y][15]-block[i][j][16])+( grays[y][17]-block[i][j][18])*( grays[y][19]-block[i][j][20]);

                    index=min>temp?y:index;
                    min=min>temp?temp:min;
                    //找到平均rgb值与该像素点的rgb值相近的图片 替代该像素点的位置

                }
                File imageFile = new File(System.getProperty("user.dir")+"/src/smallPhotos/"+(index+1)+".jpg");
                BufferedImage image = ImageIO.read(imageFile);
                image =resize(image,smallSize,smallSize);
                ImageArrays = image.getRGB(0,0,image.getWidth(),image.getHeight(),ImageArrays,0,image.getWidth());

                ImageNew.setRGB(width_i, height_i, smallSize, smallSize, ImageArrays, 0, smallSize);
                width_i+=smallSize;

            }
            width_i=0;
            height_i+=smallSize;
            System.out.println(i+"ok");
        }


        ByteArrayOutputStream out = new ByteArrayOutputStream();
        ImageIO.write(ImageNew, "jpg", out);// 图片写入到输出流中

        ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());
        BufferedImage newImage = ImageIO.read(in);
        File outputfile = new File(System.getProperty("user.dir")+"/src/results/"+name+"——two.jpg");
        ImageIO.write(newImage, "jpg", outputfile);


    }
    //计算平均rgb值
    private double[] calculate(String Photo) throws IOException {
        File imageFile = new File(Photo);
        BufferedImage image = ImageIO.read(imageFile);
        image =resize(image,smallSize,smallSize);
        double ave[]=new double[3];
        image.getSource();
        int width =image.getWidth();
        int height =image.getHeight();

        for(int i=0;i<width;i++){
            for(int j=0;j<height;j++){
                int rgb=image.getRGB(i,j)& 0xFFFFFF;
                ave[0]+=((rgb & 0xff0000)>>16)*1.0/(height*width);
                ave[1]+=((rgb & 0xff00)>>8)*1.0/(height*width);
                ave[2]+=((rgb & 0xff))*1.0/(height*width);


            }
        }

        return ave;
    }
    //压缩图片
    private static BufferedImage resize(BufferedImage source, int targetW,
                                        int targetH) {
        int type = source.getType();
        BufferedImage target = null;
        double sx = (double) targetW / source.getWidth();
        double sy = (double) targetH / source.getHeight();
        // 这里想实现在targetW,targetH范围内实现等比缩放。如果不需要等比缩放
        // 则将下面的if else语句注释即可
//        if (sx < sy) {
//            sx = sy;
//            targetW = (int) (sx * source.getWidth());
//        } else {
//            sy = sx;
//            targetH = (int) (sy * source.getHeight());
//        }
        if (type == BufferedImage.TYPE_CUSTOM) { // handmade
            ColorModel cm = source.getColorModel();
            WritableRaster raster = cm.createCompatibleWritableRaster(targetW,
                    targetH);
            boolean alphaPremultiplied = cm.isAlphaPremultiplied();
            target = new BufferedImage(cm, raster, alphaPremultiplied, null);
        } else
            target = new BufferedImage(targetW, targetH, type);
        Graphics2D g = target.createGraphics();
        // smoother than exlax:
        g.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
                RenderingHints.VALUE_INTERPOLATION_BICUBIC);
        g.drawRenderedImage(source, AffineTransform.getScaleInstance(sx, sy));
        g.dispose();
        return target;
    }
    public static void main(String[] args) throws IOException {
        OutputTwo output =new OutputTwo("timg.jpeg",576,200,32);
        System.out.println("ok");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值